Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T12:46:18.642Z Has data issue: false hasContentIssue false

Primary osteoblasts adhesion onto RGD-functionalized and cross-linked polyelectrolyte multilayer films

Published online by Cambridge University Press:  17 March 2011

Catherine Picart
Affiliation:
Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
Ludovic Richert
Affiliation:
Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
René Elkaim
Affiliation:
Parogène, 11 rue Humann, 67085 Strasbourg Cedex, France
Pierre Schaaf
Affiliation:
Institut Charles Sadron, Centre National de la Recherche Scientifique, Université Louis Pasteur, 6 rue Boussingault, 67083 Strasbourg Cedex, France
Jean-Claude Voegel
Affiliation:
Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
Benoît Frisch
Affiliation:
Laboratoire de Chimie Bioorganique, CNRS/ULP, 74 route du Rhin, 67400 Illkirch, France
Get access

Abstract

The adhesion of primary osteoblastic cells on top of biocompatible polyelectrolyte multilayer (PEM) films was investigated for native films and after changing the films properties either with a chemical stimulus (film functionalization), with a mechanical stimulus (film cross-linking), or with both stimuli combined. For the functionalization, a 15 amino acid peptide containing a –RGD- (-Arg-Gly-Asp) sequence was grafted to poly(L-glutamic) acid and deposited on top of poly(L-lysine)/poly(L-glutamic) (PLL/PGA), PLL/Poly(alginic), and PLL/Poly(galacturonic) films. The film buildup and the adsorption of the PGA-RGD was followed by Optical Waveguide Lightmode Spectroscopy and by Atomic Force Microscopy. The mechanical stimulus was achieved by crosslinking the films with a water soluble carbodiimide (EDC) in combination with N-hydroxysulfo-succinimide (sulfo-NHS) to induce amide formation. Fourier Transform Infrared Spectroscopy evidenced the conversion of amine and carboxylic groups into amide groups.

The alkaline phosphatase (ALP) activity test was used to assess osteoblast adhesion and proliferation on top of the different films over a period of eight days in culture. Whereas the native films are poorly adherent, the RGD-functionalized films exhibit an increased short time adhesion. The native films could also be successfully cross-linked thereby dramatically enhancing cell proliferation. The cells did not react similarly on the different types of films investigated : the cross-linked (PLL/Palg) and (PLL/Pgal) films were much more efficient than the native or functionalized films in terms of proliferation. On the other hand, for the (PLL/PGA) films, functionalization and film cross-linking had a similar long term effect. Very interestingly, for these latter films, both stimuli could be combined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Decher, G., Science, 277, 1232 (1997).CrossRefGoogle Scholar
2. Richert, L.; Boulmedais, F.; Lavalle, P.; Mutterer, J.; Ferreux, E.; Decher, G.; Schaaf, P.; Voegel, J.-C.; Picart, C., Biomacromolecules, 5, 284 (2004).CrossRefGoogle Scholar
3. Elbert, D. L.; Herbert, C. B.; Hubbell, J. A., Langmuir, 15, 5355 (1999).CrossRefGoogle Scholar
4. Richert, L.; Lavalle, P.; Payan, E.; Stoltz, J.-F.; Shu, X. Z.; Prestwich, G. D.; Schaaf, P.; Voegel, J.-C.; Picart, C., Langmuir, 1 (2004).Google Scholar
5. Koktysh, D. S.; Liang, X.; Yun, B. G.; Pastoriza, I.-Santos; Matts, R. L.; Giersig, M.; Serra-Rodríguez, C.; Liz-Marzán, L. M.; Kotov, N. A., Adv. funct. mater., 12, 255 (2002).3.0.CO;2-1>CrossRefGoogle Scholar
6. Tosatti, S.; Schwartz, Z.; Campbell, C.; Cochran, D. L.; VandeVondele, S.; Hubbell, J. A.; Denzer, A.; Simpson, J.; Wieland, M.; Lohmann, C. H.; Textor, M.; Boyan, B. D., J. Biomed. Mater. Res., 68A, 458 (2004).CrossRefGoogle Scholar
7. Picart, C.; Ladam, G.; Senger, B.; Voegel, J.-C.; Schaaf, P.; G, F. J.. Cuisinier; Gergely, C., J. Chem. Phys., 115, 1086 (2001).CrossRefGoogle Scholar
8. Lavalle, P.; Gergely, C.; Cuisinier, F.; Decher, G.; Schaaf, P.; Voegel, J.-C.; Picart, C., Macromolecules, 35, 4458 (2002).CrossRefGoogle Scholar
9. Boeckler, C.; Dautel, D.; Schelte, P.; Frisch, B.; Wachsmann, D.; Klein, J. P.; Schuber, F., Eur J Immunol, 29, 2297 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
10. Reddi, A. H.; Huggins, C. B., Proceedings of the Society for Experimental Biology and Medicine. Society For Experimental Biology And Medicine (New York, N. Y.), 140, 807 (1972).CrossRefGoogle Scholar
11. Sampath, T. K.; Maliakal, J. C.; Hauschka, P. V.; Jones, W. K.; Sasak, H.; Tucker, R. F.; White, K. H.; Coughlin, J. E.; Tucker, M. M.; Pang, R. H. L.; Corbett, C.; Ozkaynak, E.; Opperman, H.; Rueger, D. C., J. Biol. Chem., 267, 20352 (1992).CrossRefGoogle Scholar
12. Picart, C.; Gergely, C.; Arntz, Y.; Schaaf, P.; Voegel, J.-C.; Cuisinier, F. G.; Senger, B., Biosens. Bioelectron., ASAP (2004).Google Scholar
13. Burke, S. E.; Barrett, C. J., Biomacromolecules, 4, 1773 (2003).CrossRefGoogle Scholar
14. Lenormant, H.; Baudras, A.; Blout, E. R., J. Am. Chem. Soc., 80, 6191 (1958).CrossRefGoogle Scholar
15. Jackson, M.; Haris, P. I.; Chapman, D., Biochim. Biophys. Acta., 998, 75 (1989).CrossRefGoogle Scholar
16. Boulmedais, F.; Schwinté, P.; Gergely, C.; Voegel, J. C.; Schaaf, P., Langmuir, 18, 4523 (2002).CrossRefGoogle Scholar
17. Pierschbacher, M. D.; Ruoslahti, E., J. Biol. Chem., 262, 17294 (1987).CrossRefGoogle Scholar