Published online by Cambridge University Press: 26 February 2011
A natural chromite single crystal was compressed in a helium pressure medium to just above 35 GPa at ambient temperature and studied with energy-dispersive x-ray diffraction. The volume compression of the cubic, spinel-type structure was fit to a third-order Birch-Murnaghan equation of state with parameters a0 = 8.338(4) Å, V0 = 579.6(9) Å3, K0 =179(10) GPa, and K' = 3.9(9) up to 29 GPa. A distortive phase transition was discovered at higher pressures to a CaAl2O4-type orthorhombic structure, with two cubic unit-cell axes increasing and the third decreasing with increasing pressure. The transition can be fit to a Landau-type strain-order formulism with approximately 5% volume decrease from the cubic phase at 35 GPa. The transition may be triggered by electronic or magnetic transitions in the 3d elements Fe and Cr cations.