Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:52:20.288Z Has data issue: false hasContentIssue false

Pressure Waves in Microscopic Simulations of Laser Ablation Leonid

Published online by Cambridge University Press:  10 February 2011

V. Zhigilei
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
Barbara J. Garrison
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Laser ablation of organic solids is a complex collective phenomenon that includes processes occurring at different length and time scales. A mesoscopic breathing sphere model developed recently for molecular dynamics simulation of laser ablation and damage of organic solids has significantly expanded the length-scale (up to hundreds of nanometers) and the time-scale (up to nanoseconds) of the simulations. The laser induced buildup of a high pressure within the absorbing volume and generation of the pressure waves propagating from the absorption region poses an additional challenge for molecular-level simulation. A new dynamic boundary condition is developed to minimize the effects of the reflection of the wave from the boundary of the computational cell. The boundary condition accounts for the laser induced pressure wave propagation as well as the direct laser energy deposition in the boundary region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cleri, F., Phillpot, S. R., Wolf, D., and Yip, S., J. Am. Ceram. Soc. 81, 501 (1998).Google Scholar
2. Kohlhoff, S., Gumbsch, P., and Fischmeister, H. F., Phil. Mag. A 64, 851 (1991).Google Scholar
3. Tadmor, E. B., Ortiz, M., and Phillips, R., Phil. Mag. A 73, 1529 (1996).Google Scholar
4. Rafii-Tabar, H., Hua, L., and Cross, M., J. Phys.: Condens. Matter 10, 2375 (1998).Google Scholar
5. Shenderova, O., Brenner, D. W., Nazarov, A., Romanov, A., and Yang, L., Phys. Rev. B. 57, R3181 (1998).Google Scholar
6. Proceedings of the 4th International Conference on Laser Ablation, edited by Russo, R. E., Geohegan, D. B., Haglund, R. F. Jr, and Murakami, K., Appl. Surf. Sci. 127129 (1998).Google Scholar
7. Zhigilei, L. V., Kodali, P. B. S., and Garrison, B. J., J. Phys. Chem. B 101, 2028 (1997); J. Phys. Chem. B 102, 2845 (1998).Google Scholar
8. Zhigilei, L. V., Kodali, P. B. S., and Garrison, B. J., Chem. Phys. Lett. 276, 269 (1997).Google Scholar
9. Zhigilei, L. V. and Garrison, B. J., Appl. Phys. Lett., in press, 1999.Google Scholar
10. Zhigilei, L. V. and Garrison, B. J., Appl. Phys. Lett. 71, 551, (1997); Rapid Commun. Mass Spectrom., 12, 1273 (1998).Google Scholar
11. Zhigilei, L. V. and Garrison, B. J., Appl. Surf. Sci. 127–129, 142 (1998); Laser-Tissue Interaction IX, edited by S. L. Jacques (SPIE Proceedings Series, Vol. 3254, Washington, 1998), p. 135.Google Scholar
12. Kim, D. and Grigoropoulos, C. P., Appl. Surf. Sci. 127–129, 53 (1998).Google Scholar
13. Venugopalan, V., Nishioka, N. S., and Mikic, B. B., Biophysical Journal. 70, 2981 (1996).Google Scholar
14. Holian, B. L. and Ravelo, R., Phys. Rev. B 51, 11275 (1995).Google Scholar
15. Moseler, M., Nordiek, J., and Haberland, H., Phys. Rev. B 56, 15439 (1997).Google Scholar
16. Smirnova, J. A., Zhigilei, L. V., and Garrison, B. J., Comput. Phys. Commun., in press, 1999.Google Scholar
17. Dingus, R. S. and Scammon, R. J., Laser-Tissue Interaction IX, edited by Jacques, S. L. (SPIE Proceedings Series, Vol. 1427, Washington, 1991), p.45.Google Scholar