Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:35:39.398Z Has data issue: false hasContentIssue false

Preparation of Substrates for IBAD-MgO Coated Conductors

Published online by Cambridge University Press:  17 March 2011

Vladimir Matias
Affiliation:
MPA-STC, Los Alamos National Laboratory, Mail Stop T004, PO Box 1663, Los Alamos, NM, 87545
Jens Hänisch
Affiliation:
MPA-STC, Los Alamos National Laboratory, Mail Stop T004, PO Box 1663, Los Alamos, NM, 87545
E. John Rowley
Affiliation:
MPA-STC, Los Alamos National Laboratory, Mail Stop T004, PO Box 1663, Los Alamos, NM, 87545
Chris Sheehan
Affiliation:
MPA-STC, Los Alamos National Laboratory, Mail Stop T004, PO Box 1663, Los Alamos, NM, 87545
Paul G. Clem
Affiliation:
Sandia National Laboratories, Albuquerque, NM, 87185
Noriyuki Kumasaka
Affiliation:
Nihon Micro Coating Co., Tokyo, Japan
Ichiro Kodaka
Affiliation:
Mipox International Corp., 25821 Industrial Blvd., Hayward, CA, 94545
Get access

Abstract

We examine the influence of various substrate preparation procedures for ion-beam assist deposition (IBAD) texturing of MgO. IBAD-MgO nano-texturing is very sensitive to the nucleation surface, and surface roughness has an important influence on the texture of the MgO layer. We studied Hastelloy C-276 metal alloy as the substrate. The untreated substrate is leveled by either electropolishing, mechanical polishing or solution deposition. All three methods are applied to continuously moving tapes in long lengths. The RMS surface roughness decreases from 20-50 nm for the untreated substrate to 0.5 nm, 0.3 nm and 1 nm respectively. The in-plane and out-of plane crystalline alignment of the MgO layer improves as the roughness is decreased below 2 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matias, V., Gibbons, B. J., Feldmann, D. M. Physica C (2006) (in press).Google Scholar
2. Arendt, P. N., Foltyn, S. R., Mater. Res. Soc. Buletin 29, 543 (2004).Google Scholar
3. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H., Hammond, R. H., Appl. Phys. Lett. 71, 2955 (1997).Google Scholar
4. Selvamanickam, V., Knoll, A., Xie, Y., Li, Y., Chen, Y., Reeves, J., Xiong, X., Qiao, Y., Salagaj, T., Lenseth, K., Hazelton, D., Reis, C., Yumura, H., Weber, C., IEEE Trans. Appl. Supercond. 15, 2596 (2005).Google Scholar
5. Groves, J. R., Arendt, P. N., Foltyn, S. R., Jia, Q. X., Holesinger, T. G., Emmert, L. A., DePaula, R. F., Dowden, P. C., and Stan, L., IEEE Trans. Appl. Supercond. 13, 2651 (2003).Google Scholar
6. Kreiskott, S., Arendt, P. N., Bronisz, L. E., Foltyn, S. R., and Matias, V., Supercond. Sci. Tech. 16, 613 (2003).Google Scholar
7. Matias, V., and Gibbons, B. J., Rev. Sci. Instr. to be published (2007).Google Scholar
8. Matias, V., Gibbons, B. J., and Ashworth, S. P., U.S. Dept. of Energy Annual Peer Review, Washington D.C., 2005.Google Scholar
9.Electro Polish Systems, Inc., Milwaukee, WI.Google Scholar