Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:52:09.208Z Has data issue: false hasContentIssue false

Preparation of SrRuO3 and CaRuO3 Films by Mocvd and its Application to Electrodes for Ferroelectric Thin Films

Published online by Cambridge University Press:  10 February 2011

N Okuda
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku, Yokohana, 226–8502
N Higashi
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku, Yokohana, 226–8502
K Ishikawa
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku, Yokohana, 226–8502
N Nukaga
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku, Yokohana, 226–8502
H Funakubo
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku, Yokohana, 226–8502
Get access

Abstract

SrRuO3 and CaRuO3 thin films were successfully prepared by metalorganic chemical vapor deposition (MOCVD). Sr(C11H19O2)2(C8H23N5)x – Ru(C11H19O2)3–O2 and Sr(C11H19O2)2(C8H23N5)x. – Ru[(C5H4)(C2H5)]2 - O2 systems, and Ca(C11H19O2)2(C8H23N5)x, – Ru(C11H19O2)3–O2 and Ca(C11 H19O2)2(C8H23N5)x – Ru[(C5H4)(C2H5)]2– O2 systems were used as source materials for SrRuO3 and CaRuO3 thin film preparation, respectively. Sr and Ca source vapors were successfully obtained by bubbling N2 gas including C8H23N5 vapor through liquid sources. Self-composition limiting to keep single phase of SrRuO3 and CaRuO3 was observed under an excess input of the Ru source at 700 – 750 °C for both Ru sources. Epitaxlly grown films with high crystal perfection were grown on various kinds of substrates in this temperature range. Epitaxially grown SrRuO3 film with three kinds of orientation, (100), (110) and (111), were deposited on (100), (110) and (111)SrTiO3 substrates, respectively. By using these films as bottom electrodes, we measured the ferroelectric anisotropy of SrBi2Ta2O9 by preparing (001)- and (116)- oriented films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rao, R. A., Gan, Q. and Eom, C. B., Appl.Phys Lett., 71, p. 1171(1997).Google Scholar
2. Jiang, J. C., Tian, W., Pan, X. Q., Gan, Q., and Eom, C. B., Appl.Phys.Lett., 72, p.2963(1998).Google Scholar
3. Fahey, K. P. and Clemens, B. M., Appl.Phys.Lett., 67, p.2480(1995).Google Scholar
4. Jiang, J. C., Pan, X. and Chen, C. L., Mater.Res.Soc.Symp.Proc., 493, p. 195(1998).Google Scholar
5. Chen, C. L., Cao, Y., Hung, Z. J., Jiang, Q. D., Zhang, Z., Sun, Y. Y., Kang, W.N., Dezanti, L.M., Chu, W.K. and Chu, C. W., Appl.Phys.Lett., 71, p.1047(1997).Google Scholar
6. Hiratani, M., Okazaki, C., lmagawa, K. and Takagi, K., Jpn.J.Appl.Phys., 35, p.6212(1996).Google Scholar
7. Maria, J. P., Mcjkinstry, S. T., Schlom, D. G., Hawley, M. E. and Brown, G. W., J.Appl.Phys., 83, p.4373(1998).Google Scholar
8. Jia, Q. X., Chu, F., Findikoglu, A. T., Foltyn, S. R., Smith, J. L. and Mitchell, T. E., J.Mater.Res., 11, p.2263(1996).Google Scholar
9. Chu, F., Jia, Q. X., Landrum, G., Wu, X. D., Fawley, M. and Mitchell, T. E., J.Electron.Mater., 25, p.1754(1996).Google Scholar
10. Okuda, N., Matsuzaki, T. and Funakubo, H., Tms.Mater.Res.Soc., 24, p.51 (1999).Google Scholar
11. Breitkopf, R., Meda, L. J., Haas, T. and Kriss, R. U., Mater.Res.Soc.Proc., 495, p.51(1999).Google Scholar
12. Okuda, N., Saitou, K. and Funakubo, H., Jpn.J.Appl.Phys.Part 1, submitted for publication.Google Scholar
13. Higashi, N., Okuda, N. and Funakubo, H., Jpn.J.Appl.Phsy. Part 1, submitted for publication.Google Scholar
14. Matsuzaki, T., Okuda, N., Shinozaki, K., Mizutani, N. and Funakubo, H., Jpn.J. Appl.Phys.Part 1, 37, p.6229(1998).Google Scholar
15. Funakubo, H., Nukaga, N., Ishikawa, K. and Watanabe, T., Jpn.J. Appl.Phys.Part 1, 38, p.L199(1999).Google Scholar
16. Nukaga, N., Ishikawa, K., Shinozaki, K., Mizutani, N. and Funakubo, H., Key.Eng.Mater., 169–170, p.145(1998)Google Scholar
17. Nukaga, N., Ishikawa, K. and Funakubo, H., Jpn.J.Appl.Phys.Part 1, 38, p.5428(1999).Google Scholar
18. Eom, C. B., Cava, R. J., Fleming, R. M., Philips, J. M., Dover, R. B., Marshall, J. H., Hsu, J. W. P., Krajewski, J. J. and Peck, W. F., Science, 258, p.1766(1992).Google Scholar
19. Ishikawa, K. and Funakubo, H., Appl.Phys.Lett., 75, p. 1970(1999).Google Scholar
20. Ishikawa, K., Funakubo, H., Saito, K., Saiki, A., Suzuki, T., Nishi, Y. and Fujimoto, M., J.Appl.Phys, submitted for publication.Google Scholar
21. lshikawa, K. and Funakubo, H., Jpn.J.Appl.Phys., submitted for publication.Google Scholar
22. Matsuzaki, T. and Funakubo, H., J.Appl.Phys., 86, p.4559 (1999).Google Scholar