Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T12:00:08.676Z Has data issue: false hasContentIssue false

Preparation of Shape and Size-Controlled Zinc Oxide Nanostructures by Chemical Spray Pyrolysis Technique

Published online by Cambridge University Press:  01 February 2011

Tatjana Dedova
Affiliation:
[email protected], Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, Tallinn, 19086, Estonia, +3726203369, +3726203367
Malle Krunks
Affiliation:
[email protected], Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, Tallinn, 19086, Estonia
Arvo Mere
Affiliation:
[email protected], Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, Tallinn, 19086, Estonia
Jelena Klauson
Affiliation:
[email protected], Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, Tallinn, 19086, Estonia
Olga Volobujeva
Affiliation:
[email protected], Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, Tallinn, 19086, Estonia
Get access

Abstract

Highly structured layers comprising of vertically aligned zinc oxide rods, tripods or platelets were fabricated by spray pyrolysis method at temperatures of 510-550 °C. The zinc chloride solution was pulverized onto the preheated substrates of glass and ITO, SnO2, ZnO covered glass substrates with the help of compressed air as a carrier gas. ZnO layers were characterized by scanning electron microscopy and Raman spectroscopy. C-axis orientated ZnO nanorod arrays of well-developed hexagonal rods with length from some hundreds of nanometers up to some microns and with diameter from 70 nm up to 900 nm . The rise of both the growth temperature and solution concentration increases rod dimensions. Deposition of the solutions with the concentration of 0.05 up to 0.2 mol/l results in structured layers composed of rods on glass substrates. Using ITO, SnO2 and ZnO thin film covered glasses diluted solutions should be used to obtain ZnO nanorods. Alcoholic solutions allow deposit thinner rods and reduce the deposition temperature. Very strong and relatively narrow E2 Raman bands indicate that ZnO rods prepared by spray pyrolysis technique are of high crystal quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Heo, Y.W., Norton, D.P., Tien, L.C., Kwon, Y., Kang, B.S., Ren, F., Pearton, S.J. and LaRoche, J.R., Mater. Sci. Eng., R47,1 (2004).Google Scholar
[2]. Yi, G.-C., Wang, C. and Park, W.I., Semicond. Sci. Technol., 20, S22 (2005).Google Scholar
[3]. nenkamp, R. Ko, Boedecker, K., Lux-Steiner, M.C., Poschenrieder, M., Zenia, F., Levy-Clement, C. and Wagner, S., Appl. Phys Lett. 77, 2575 (2000).Google Scholar
[4]. Beermann, N., Vayssieres, L., Lindquist, S.E. and Hagfeldt, A., J. Electrochem. Soc. 147, 2456 (2000).Google Scholar
[5]. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., Science, 292, 1897 (2001).Google Scholar
[6]. Wu, J.-J. and Liu, S.-C., J. Phys. Chem. B, 106, 9546 (2002).Google Scholar
[7]. Park, J.Y., Jung, I.O., Moon, J.H., Lee, B.-T. and Kim, S.S., J. Cryst. Growth, 282, 353 (2005).Google Scholar
[8]. Guo, M., Diao, P., Wang, X. and Cai, S., J. Solid State Chem., 178, 3210 (2005).Google Scholar
[9]. Zhao, J., Jin, Z.-G., Li, T. and Liu, X.-X., J. Europ. Ceramic Soc., 26, 2769 (2006).Google Scholar
[10]. Krunks, M., Dedova, T. and Acik, I. Oja, Thin Solid Films, 515, 1157 (2006).Google Scholar
[11]. Patil, P.S., Mat. Chem. Phys., 59, 185 (1999).Google Scholar
[12]. Krunks, M. and Mellikov, E., Thin Solid Films, 270, 33 (1995).Google Scholar
[13]. Yan, H., He, R., Pham, J. and Yang, P., Adv. Mater., 15, 402 (2003).Google Scholar
[14]. Li, Q., Kumar, V., Li, Y., Zhang, H. and Chang, R.P.H., Chem. Mater. 17, 1001 (2005).Google Scholar
[15]. Alim, K.A., Fonoberov, V.A., Shamsa, M. and Baladin, A., J. Appl. Phys. 97, 124313 (2005).Google Scholar
[16]. Gupta, V., Bhattacharya, P., Yusuk, Y.I., Sreenivas, K. and Katiyar, R.S., J. Cryst. Growth 287, 39 (2006).Google Scholar
[17]. Zhang, D.-F., Sun, L.-D. and Yan, C.H., Chem. Phys. Letters 422, 46 (2006).Google Scholar
[18]. Zhao, A., Luo, T., Chen, L., Liu, Y., Li, X., Tang, Q., Cai, P. and Qian, Y., Mat. Chem. Phys., 99, 50 (2006).Google Scholar