Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T20:57:33.684Z Has data issue: false hasContentIssue false

Preparation of Polymer Nanocomposites with Enhanced Antimicrobial Properties

Published online by Cambridge University Press:  14 December 2012

Beatriz L. España-Sánchez
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna H. 140, Saltillo, Coah. C.P. 25294, México
Carlos A. Ávila-Orta*
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna H. 140, Saltillo, Coah. C.P. 25294, México
Maria G. Neira-Velázquez
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna H. 140, Saltillo, Coah. C.P. 25294, México
Silvia G. Solís-Rosales
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna H. 140, Saltillo, Coah. C.P. 25294, México
Pablo González -Morones
Affiliation:
Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna H. 140, Saltillo, Coah. C.P. 25294, México
Get access

Abstract

Plasma surface activation and antibacterial properties of nanocomposites of polypropylene/silver nanoparticles (PP/nAg) and nylon-6/silver nanoparticles (Ny6/nAg) were investigated. The nanocomposites were prepared by melt blending assisted by ultrasound, while surface activation was achieved by means of argon plasma. To evaluate the antimicrobial properties of the nanocomposites, pathogen microorganisms such as Pseudomonas aeruginosa and Aspergillus niger were tested. Scanning Electron Microscopy (SEM) analyses showed a uniform dispersion of nanoparticles within the polymer matrix, though the presence of some agglomerates was also appreciated. On the other hand, surface topography by Atomic Force Microscopy (AFM) suggested that ions from the argon plasma generated ion collisions with the surface of the nanocomposites removing or etching polymer from surface and improving silver nanoparticles exposure, increasing their antimicrobial properties as corroborated by antimicrobial analyses. Nanocomposites exposed to argon plasma presented higher antimicrobial properties than the ones not exposed. These results indicated that plasma treatment increased the contact area of the nanoparticles with the microorganisms and enhanced the antimicrobial properties of nanocomposites. The results also showed that PP/nAg nanocomposites presented higher bacterial inhibition than Ny6/nAg nanocomposites, indicating that the chemical structure of the polymer also plays a big role in the final performance of the composite.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tan, X., Xu, Y., Cai, N., Jia, G., Polymer Composites, 30(6), 835 (2009).CrossRefGoogle Scholar
Kumar, R. and Münstedt, H., Polymer International, 54(8), 1180 (2005).CrossRefGoogle Scholar
Palza, H., Gutiérrez, S., Delgado, K., Salazar, O., Fuenzalida, V., Ávila, J.I., Figueroa, G., Quijada, R., Macromolecular Rapid Communications, 31(6), 563 (2010).CrossRefGoogle Scholar
Delgado, K., Quijada, R., Palma, R., Palza, H., Letters in Applied Microbiology, 53(1), 50 (2011).CrossRefGoogle Scholar
Radheshkumar, C. and Münstedt, H., Reactive and Functional Polymers, 66(7), 780 (2006).CrossRefGoogle Scholar
Egger, S., Lehmann, R.P., Heigh, M.J., Schuppler, M., Applied and Environmental Microbiology, 75(9), 2973 (2009).CrossRefGoogle Scholar
Kumar, A., Vemula, P.K., Ajayan, P.M., John, G., Nature Materials, 7(3), 263 (2008).CrossRefGoogle Scholar
Ávila Orta, C.A., Martínez Colunga, J.G., Bueno Báquez, D., Raudry López, C.E., Cruz Delgado, V.J., González Morones, P., Valdés Garza, J.A., Esparza Juárez, M.E., Espinosa González, J.C., Rodríguez González, J.A., WO/2010/117256.Google Scholar
Ávila Orta, C.A., Neira Velázquez, M.G., España Sánchez, B.L., Ortega Ortiz, H., González Morones, P., Rodríguez González, J.A., Valdés Garza, J.A., MX/a/2011/013347.Google Scholar
Amanatides, E., Mataras, D., Katsikogianni, M., Missirlis, Y.F., Surface and Coatings Technology, 200(22-23), 6331 (2006).CrossRefGoogle Scholar
Tagawa, M., Yokota, K., Kishida, K., Okamoto, A., Ishizawa, J., Milton, T.K., High Performance Polymers, 22(2), 213 (2010).CrossRefGoogle Scholar
Beake, B.D., Ling, S.G., Leggett, G.J., Journal of Materials Chemistry, 8, 1735 (1998).CrossRefGoogle Scholar
Bittmann, B., Haupert, F., Schlarb, A.K., Ultrasonics Sonochemistry, 18(1), 120 (2011).CrossRefGoogle Scholar
France, R.M. and short, R.D., Langmuir, 14(17), 4827 (1998).CrossRefGoogle Scholar
Chae, D.W. and Kim, B.C., Macromolecular Materials and Engineering, 290(12), 1149 (2005).CrossRefGoogle Scholar
Wu, X., Li, J., Wang, L., Huang, D., Zuo, Y., Li, Y., Biomedical Materials, 5(4), 044105 (2010).CrossRefGoogle Scholar
Perkas, N., Amirian, G., Dubinsky, S., Gazit, S., Gedanken, A., Journal of Applied Polymer Science, 104(3), 1423 (2007).CrossRefGoogle Scholar
Chae, D.W., Oh, S.G., Kim, B.C., Journal of Polymer Science B: Polymer Physics, 42(5), 790 (2004).CrossRefGoogle Scholar