Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:08:07.306Z Has data issue: false hasContentIssue false

Preparation of Nanoporous MgAl2O4 by Combined Utilization of Sol-Gel Process and Combustion of Biorenewable Oil

Published online by Cambridge University Press:  09 March 2011

Christian Hörtz
Affiliation:
Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
Danielle M. Ladd
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, U.S.A.
Dong-Kyun Seo
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, U.S.A.
Get access

Abstract

Nanoporous MgAl2O4 particulates with high porosities were successfully prepared from sol-gel reactions, solvent exchange with castor oil and subsequent combustion and calcination at 700 °C. The products were crystalline and semitransparent. Changes in the metal precursor concentrations allowed control of pore volumes from 0.7 to 1.1 cm3/g and average pore sizes from 14 to 19 nm. The specific surface areas are about 200 m2/g regardless of the precursor concentrations. After heating at 1000 °C for 10 hours, the products kept about 70% of their original pore volume and about 60% of the original surface area. Heating at 1100 °C caused a drastic reduction of pore volume and surface area to 40 and 36%, respectively, as the average particle size increased to 23 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bocanegra, Sonia A., Ballarini, Adriana D., Scelza, Osvaldo A., de Miguel, Sergio R., Mater. Chem. Phys. 111 (2008) 534–541.10.1016/j.matchemphys.2008.05.002Google Scholar
2. Salmones, J., Galicia, J.A., Wang, J.A., Valenzuela, M.A., Aguilar-Rios, G., J. Mater. Sci. Lett. 19 (2000) 1033–1037.10.1023/A:1006734902538Google Scholar
3. Guo, J., Lou, H., Zheng, X., Carbon 45(2007) 1314–1321.10.1016/j.carbon.2007.01.011Google Scholar
4. Zafar, Q., Mattisson, T., Gevert, B., Energy & Fuels 20 (2006), 34–44.10.1021/ef0501389Google Scholar
5. Varnier, O., Hovnanian, N., Larbot, A., Bergez, P., Cot, L., Charpin, J., Mater. Res. Bull., 29 (1994), 479–488.10.1016/0025-5408(94)90035-3Google Scholar
6. Zhang, X., Mater. Chem. Phys. 116 (2009) 415–420.10.1016/j.matchemphys.2009.04.012Google Scholar
7. Wang, C. T., Lin, L. S., Yang, S. J.,J. Am. Ceram. Soc. 75, (1992), 2240–3.10.1111/j.1151-2916.1992.tb04490.xGoogle Scholar
8. Alvar, E. N., Rezaei, M., Scrip. Mater. 61, (2009), 212–215.10.1016/j.scriptamat.2009.03.047Google Scholar
9. Li, W.-C., Comotti, M., Lu, A.-H., Schüth, F., Chem. Commun., 2006, 1772–1774.10.1039/B601109HGoogle Scholar
10. Ladd, D. M., Volosin, A., Seo, D.-K., J. Mater. Chem. 20, (2010), 5923–5929.10.1039/b927510jGoogle Scholar
11. Ladd, D. M., Seo, D.-K., J. Porous Mater. submitted for publication.Google Scholar
12. Baumann, T. F., Gash, A. E., Chinn, S. C., Sawvel, A. M., Maxwell, R. S., Satcher, J. H. Jr., Chem. Mater. 17, (2005), 395–401.10.1021/cm048800mGoogle Scholar
13. Sawada, H., Mater. Res. Bull. 30, (1995), 341–345.10.1016/0025-5408(95)00010-0Google Scholar
14. Ye, G., Oprea, G., Troczynskii, T. J. Am. Ceram. Soc., 88 (2005), 3241–3244.10.1111/j.1551-2916.2005.00564.xGoogle Scholar