Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:35:52.075Z Has data issue: false hasContentIssue false

Preparation of Montmorillonite-p-Aminoazobenzene Intercalation Compounds and Their Photochemical Behavior

Published online by Cambridge University Press:  15 February 2011

Makoto Ogawa
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo 3–4–1, Shinjuku-ku, Tokyo 169, Japan.
Keiko Fujii
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo 3–4–1, Shinjuku-ku, Tokyo 169, Japan.
Kazuyuki Kuroda
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo 3–4–1, Shinjuku-ku, Tokyo 169, Japan.
Chuzo Kato
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo 3–4–1, Shinjuku-ku, Tokyo 169, Japan.
Get access

Abstract

Homoionic-montmorillonite-p-aminoazobenzene intercalation compounds were prepared by novel solid-solid reactions at room temperature. When Na-, Ca- and Ni-montmorillonites were used as host materials, the absorption maxima of p-aminoazobenzene changed considerably upon intercalation, causing the difficulty of studying photochemical behavior of the intercalated dyes. The n-dodecylammonium-montmorillonite-p-aminoazobenzene intercalation compound gave an absorption spectrum similar to that observed for p-aminoazobenzene dissolved in benzene. The intercalated paminoazobenzene in the interlayer space of n-dodecylammoniummontmorillonite exhibited reversible cis-trans photoisomerization by irradiation of UV light.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Theng, B.K.G., The Chemistry of Clay-Organic Reactions, Adam Hilger, London.(1974)Google Scholar
2. For example, Yariv, J.S., Nassre, A. and Bar-on, P., J.Chem.Soc., Faraday Trans. 1, 86, 1593 (1990).Google Scholar
3. For example, Endo, T., Sato, T. and Shimada, M., J.Phys.Chem.Solids, 47, 799 (1986).Google Scholar
4. Brown, G.H., Photochromism, Wiley-Interscience, New York (1971).Google Scholar
5. Miyata, H., Sugahara, Y., Kuroda, K. and Kato, C., J.Chem.Soc., Faraday Trans. 1, 83, 1851 (1987).Google Scholar
6. Adams, J.M. and Gabbutt, A.J., J.Incl.Phenom., 9, 63 (1990).CrossRefGoogle Scholar
7. Seki, T. and Ichimura, K., Macromolecules, 23, 31 (1990).Google Scholar
8. Kambe, K. and Yamada, T., Appi.Phys.Lett., 43, 878 (1983).CrossRefGoogle Scholar
9. For example, Shinkai, S., Nakaji, T., Ogawa, T., Shigematsu, K. and Manabe, O., J.Am.Chem.Soc., 103,111 (1981).Google Scholar
10. For example, Tachibana, H., Goto, A., Nakamura, T., Matsumoto, M., Manda, E., Niino, H.,Yabe, A. and Kawabata, Y., J.Am.Chem.Soc., 111, 3080 (1989).CrossRefGoogle Scholar
11. For example, Fukushima, M., Osa, T. and Ueno, A., J.Chem.Soc., Chem.Commun., 1991, 15.Google Scholar
12. Ogawa, M., Kuroda, K. and Kato, C., Chem.Lett., 1989, 1654.Google Scholar
13. Ogawa, M., Handa, T., Kuroda, K. and Kato, C., Chem.Lett., 1990, 71.Google Scholar
14. Ogawa, M., Kato, K., Kuroda, K. and Kato, C., Clay Sci., 8, 31 (1990).Google Scholar
15. Ogawa, M., Hashizume, T., Kuroda, K. and Kato, C., Inorg.Chem., 30, 584 (1991).Google Scholar
16. Ueno, K., J.Am.Chem.Soc., 79, 3205 (1957).Google Scholar
17. Brode, W.R., Gould, J.H. and Wyman, G.M., J.Am.Chem.Soc., 74, 4641 (1952).Google Scholar
18. Jones, T.R., Clay Miner., 18, 399 (1983).CrossRefGoogle Scholar