Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:36:45.408Z Has data issue: false hasContentIssue false

Preparation of Magnetite Nanoparticles by Thermal Decomposition of Hematite Powder in the Presence of Organic Solvent

Published online by Cambridge University Press:  21 March 2011

Chun-Rong Lin
Affiliation:
Department of Mechanical Engineering, Southern Taiwan University, No.1, Nan-Tai Street, Yung-Kang City, Tainan County, 710, Taiwan
Ray-Kuang Chiang
Affiliation:
Department of Electronic Materials, Far East University, No.49, Chung Hua Rd., Hsin-Shih, Tainan County, 744, Taiwan
Chih-Jung Chen
Affiliation:
Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
Hsin-Yi Lai
Affiliation:
Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
Igor S. Lyubutin
Affiliation:
Institute of Crystallography, Russian Academy of Sciences, Moscow, 117333, Russian Federation
Egor A. Alkaev
Affiliation:
Institute of Crystallography, Russian Academy of Sciences, Moscow, 117333, Russian Federation
Get access

Abstract

Magnetite nanoparticles have been synthesized by thermal decomposition of hematite (Fe2O3) powder in the presence of high boiling point solvent. The mixture of hematite and 1- octadecene solvent was heated and stirred in nitrogen gas at the temperature of 320 °C for the desired time (∼2 to 28 hrs). The influence of the reaction time on transformation process was analyzed with X-ray diffraction (XRD), Mössbauer spectroscopy (MS), and magnetic measurements. XRD patterns show that the phase of intermediate was composed of spinel phase and corundum phase (α-Fe2O3). The 57Fe Mössbauer spectra show that the spinel phase originated from the magnetite particles. The structure transformation proportion of hematite to magnetite strongly depends on reaction times. After reflux for 28 hrs the hematite-magnetite transformation was complete. The mean crystallite size of pure phase of magnetite particles is about 40 nm. The saturation magnetization increases with the reaction time, which corresponds to an increase of concentration of magnetite in the samples. A pronounced feature of the Hc and σr/σs observed in samples is the steplike change which appears at 125 K and is characteristic of the Verwey transition. The hyperfine parameters of Mössbauer spectrum measured at low temperature also indicate that the Verwey phase transition occurs. In other words, the Verwey transition is an indication that the magnetite particles exactly grew up in the synthesized compounds. This thermal decomposition process provided a method to prepare pure magnetite as well as magnetite/hematite nanocomposites useful for various magnetic applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Batlle, X. and Labarta, A., J. Phys. D: Appl. Phys. 35, R15 (2002).Google Scholar
2. Raj, K., Moskowitz, B. and Casciari, R., J. Magn. Magn. Mater. 149, 174 (1995).Google Scholar
3. Xu, X., Friedman, G., Humfeld, K. D., Majetich, S. A. and Asher, S. A., Adv. Mater. 13, 1681 (2001).Google Scholar
4. Pankhurst, Q. A., Connolly, J., Jones, S. K. and Dobson, J., J. Phys. D: Appl. Phys. 36, R167 (2003).Google Scholar
5. Pineau, A., Kanari, N. and Gaballah, I., Thermochim. Acta 447, 89 (2006).Google Scholar
6. Kaczmarek, W. A. and Ninham, B. W., IEEE Trans. Magn. 30, 732 (1994).Google Scholar
7. GarcÌa, J. and SubÌas, G, J. Phys.: Condens. Matter 16, R145 (2004).Google Scholar
8. Morrish, A. H., Canted Antiferromagnetism: Hematite, (World Scientific, 1994) pp.51 – pp. 75Google Scholar
9. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X. and Li, G., J. Am. Chem. Soc. 124, 8204 (2002).Google Scholar
10. Yu, W. W., Falkner, J. C., Yavuz, C. T. and Colvin, V. L., Chem. Commun. 2306 (2004).Google Scholar
11. Lin, C. R., Chiang, R. K., Sung, T. W. and Wang, J. S., J. Appl. Phys. 99, 08N710 (2006).Google Scholar
12. Lin, C. R., Wang, J. S., Sung, T. W. and Chiang, R. K., IEEE Trans. Mag. 41, 3466 (2005).Google Scholar
13. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X. and Li, G., J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
14. Langford, J. I. and Wilson, A. J. C., J. Appl. Cryst. 11, 102 (1978).Google Scholar
15. Dorman, J. L. and Fiorani, D., Eds. Magnetic Properties of Fine Particles, (Elsevier, Amsterdam 1992).Google Scholar
16. Van Diepen, A.H., Physica B, 86–88, 955 (1977).Google Scholar
17. Daniels, J. M. and Rosenswaig, A., J. Phys. Chem. Solids 30, 1561 (1969).Google Scholar
18. Voogt, F. C., Fujii, T., Smulders, P. J. M., Niesen, L., James, M. A. and Hibma, T., Phys. Rev. B 60, 11193 (1999).Google Scholar
19. AragÛn, R., Buttrey, D. J., Shepherd, J. P., and Honig, J. M., Phys. Rev. B 31, 8461 (1996).Google Scholar
20. Shepherd, J. P., Koenitzer, J. W., AragÛn, R., Spalek, J. and Honig, J. M., Phys. Rev. B 43, 8461 (1996).Google Scholar
21. Kozlowski, A., Kakol, Z., Kim, D., Zalecki, R. and Honig, J. M., Phys. Rev. B 54, 12093 (1996).Google Scholar
22. Kozlowski, A., Rasmussen, R. J., Sabol, J. E., Metcalf, P. and Honig, J. M., Phys. Rev. B 48, 2057 (1993).Google Scholar
23. Guigue-Millot, N., Keller, N. and Perriat, P., Phys. Rev. B 64, 012402 (2001).Google Scholar
24. Daniels, J. M. and Rosenswaig, A., J. Phys. Chem. Solids 30, 1561 (1969).Google Scholar
25. Brabers, V. A. M., Walz, F. and Kronmüller, H., Phys. Rev. B 58, 14163 (1998).Google Scholar
26. Nogués, J., Sort, J., Langlais, V., Skumryev, V., Suriñach, S., Muñoz, J. S. and Baró, M. D., Phys. Rep. 422, 65 (2005).Google Scholar
27. Özdemir, Ö., Geophys. J. Int. 141, 351 (2000).Google Scholar