Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:36:55.321Z Has data issue: false hasContentIssue false

Preparation of Macroporous Poly(divinylbenzene) Gels via Living Radical Polymerization

Published online by Cambridge University Press:  01 February 2011

Joji Hasegawa
Affiliation:
[email protected], Kyoto University, Department of Chemistry, Kyoto, Japan
Kazuyoshi Kanamori
Affiliation:
[email protected], Kyoto University, Department of Chemistry, Kyoto, Japan
Kazuki Nakanishi
Affiliation:
[email protected], United States
Teiichi Hanada
Affiliation:
[email protected], United States
Shigeru Yamago
Affiliation:
[email protected], Kyoto University, Institute for Chemical Research, Uji, Japan
Get access

Abstract

Macroporous cross-linked polymeric dried gels have been obtained by inducing phase separation in a homogeneous poly(divinylbenzene) (PDVB) network formed by organotellurium-mediated living radical polymerization (TERP). The living polymerization reaction of DVB with the coexistence of a non-reactive polymeric agent, poly(dimethylsiloxane) (PDMS), in solvent 1,3,5-trimethylbenzene (TMB) resulted in polymerization-induced phase separation (spinodal decomposition), and the transient structure of spinodal decomposition has been frozen by gelation. Well-defined macroporous monolithic dried gels with bicontinuous structure in the micrometer scale are obtained after removing PDMS and TMB by simple washing and drying. The properties of the macropores have been controlled by changing starting composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peters, E. C., Petro, M., Svec, F., Fréchet, J. M. J., Anal. Chem. 69, 36463649 (1997).Google Scholar
2. Svec, F., J. Sep. Sci. 28, 729745 (2005).Google Scholar
3. Buchmeiser, M. R., Polymer 48, 21872198 (2007).Google Scholar
4. Yamago, S., Iida, K., Yoshida, J., J. Am. Chem. Soc. 124, 28742875 (2002).Google Scholar
5. Braunecker, W. A., Matyjaszewski, K., Prog. Plym. Sci. 32, 93146 (2007).Google Scholar
6. Kanamori, K., Nakanishi, K., Hanada, T., Adv. Mater. 18, 24072411 (2006).Google Scholar
7. Hashimoto, T., Itakura, M., Hasegawa, H., J. Chem. Phys. 85, 61186128 (1986).Google Scholar
8. Flory, P. J., Principles of Polymer Chemistry (Cornell University Press: Ithaca, New York, 1971).Google Scholar
9. Ashworth, A. J., Price, G. J., Macromolecules 19, 362363 (1986).Google Scholar
10. Nose, T., Polymer 36, 22432248 (1995).Google Scholar
11. de Gennes, P.-G., Scaling Concepts in Polymer Physics (Cornell University Press: Ithaca, New York, 1979).Google Scholar
12. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., Siemieniewska, T., Pure & Appl. Chem. 57, 603619 (1985).Google Scholar
13. Ohnaga, T., Chen, W., Inoue, T., Polymer 35, 37743781 (1994).Google Scholar
14. Inoue, T., Prog. Polym. Sci. 20, 119153 (1995).Google Scholar