Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T03:27:44.134Z Has data issue: false hasContentIssue false

Preparation of InN by Means of AP-HCVD Using In Buffer Layers

Published online by Cambridge University Press:  01 February 2011

Hiroaki Yokoo
Affiliation:
[email protected], Shizuoka University, material science and chemical engineering, 3-5-1 nakaku jouhoku, hamamatu, 4328003, Japan
Naoki Wakiya
Affiliation:
[email protected], Shizuoka University, Material Science and Chemical Engineering, 3-5-1 Jouhoku, Hamamatu, 4328003, Japan
Naonori Sakamoto
Affiliation:
[email protected], Shizuoka University, Material Science and Chemical Engineering, 3-5-1 Jouhoku, Hamamatu, 4328003, Japan
Takato Nakamura
Affiliation:
[email protected], Shizuoka University, Material Science and Chemical Engineering, 3-5-1 Jouhoku, Hamamatu, 4328003, Japan
Hisao Suzuki
Affiliation:
[email protected], Shizuoka University, Material Science and Chemical Engineering, 3-5-1 Jouhoku, Hamamatu, 4328003, Japan
Get access

Abstract

We have grown indium nitride (InN) films using In buffer layer on an a-plane sapphire substrate under atmospheric pressure by halide CVD (AP-HCVD). Growth was carried out by two steps: deposition In buffer layer at 900 °C and subsequent growth of InN layer at 650 °C. In order to compare, we also grown InN films on an a-plane sapphire. The InN films are investigated on crystal quality, surface morphology and electrical property using high-resolution X-ray diffraction (HR-XRD), X-ray pole figure, scanning electron microscope (SEM), Hall measurement. The results show that the crystal quality, surface morphology and electrical property of InN films are improved by using In buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W., Haller, E. E., Lu, H., Schaff, W. J., Saito, Y., and Nanishi, Y., Appl. Phys. Lett. 80 (2002) 3967.Google Scholar
[2] Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., and Kurimoto, E., Appl. Phys. Lett. 81 (2002) 1246.Google Scholar
[3] Kasic, A., Schubert, M., Saito, Y., Nanishi, Y., Wanger, G., Phys. Rev. B 65 (2002) 115206.Google Scholar
[4] Xu, K., Yoshikawa, A., Appl. Phys. Lett. 83 (2003) 251.10.1063/1.1592309Google Scholar
[5] Nanishi, Y., saito, Y., Yamaguchi, T., Jpn. J. Appl. Phys. 42 (2003) 2549 Google Scholar
[6] Huang, Y., Wang, H., Sun, Q., Chen, J., Li, D.Y., Wang, Y.T., Yang, H., J. Crystal Growth 276 (2005) 13 Google Scholar
[7] Zhu, X.L., Guo, L.W., Yu, N.S., Yan, J.F., Peng, M.Z., Zhang, J., Jia, H.Q., Chen, H., Zhou, J.M., J. Crystal Growth 306 (2007) 292.10.1016/j.jcrysgro.2007.05.052Google Scholar
[8] Lebedev, V., Morales, F.M., Cimalla, V., Lozano, J.G., Gonzalez, D., Himmerlich, M., Krischok, S., Schaefer, J.A., Ambacher, O., Superlattices and Microstructures 40 (2006) 289.Google Scholar
[9] Singh, P., Ruterana, P., Morales, M., Goubilleau, F., Wojdak, M., Carlin, J.F., Ilegems, M., Chateigner, D., Superlattices and Microstructures 36 (2004) 537.Google Scholar
[10] Wu, X.H., Fini, P., Tarsa, E.J., Heying, B., Keller, S., Mishra, U.K., DenBaars, S.P., Speck, J.S., J. Crystal Growth 189 (1998) 231.Google Scholar
[11] Bhuiyan, A.G., Sugita, K., Kasashima, K., Hashimoto, A., Yamamoto, A., Davydov, V.Y., Appl. Phys. Lett. 83 (2003) 4788.Google Scholar
[12] Walukiewicz, W., Li, S.X., Wu, J., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., J. Crystal Growth 269 (2004) 119.Google Scholar