Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:53:16.511Z Has data issue: false hasContentIssue false

Preparation of Ba1−xSrxTiO3 Thin Films by Metalorganic Chemical Vapor Deposition and Their Properties

Published online by Cambridge University Press:  15 February 2011

S. R. Gilbert
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
B. W. Wessels
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
D. A. Neumayer
Affiliation:
Department of Chemistry
T. J. Marks
Affiliation:
Department of Chemistry
J. L. Schindler
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208
C. R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Ba1−xSrxTiO3 thin films were deposited over the entire solid solution range by low pressure metal-organic chemical vapor deposition. The metal-organic precursors employed were titanium tetraisopropoxide and barium and strontium(hexafl uoroacetylacetonate)2·tetraglyme. The substrates used were LaAlO3 and (100) p-type Si. Ba1−xSrxTiO3 films deposited on LaAlO3 were epitaxial, while the films deposited on Si showed no texture. Auger spectroscopy indicated that single phase Ba1−xSrxTiO3 films did not contain detectable levels of fluorine contamination. The dielectric constant was found to depend upon the solid solution composition x, and values as large as 220 measured at a frequency of 1 MHz were obtained. The resistivities of the as-deposited films ranged from 103 to 108 Ω-cm. Temperature dependent resistivity measurements indicated the films were slightly oxygen deficient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Basmajian, J. A. and DeVries, R. C., J. Am. Ceram. Soc., 40, 373 (1957).Google Scholar
2. Xu, Y., Ferroelectric Materials and Their Applications, (North Holland, New York, 1991), pp. 40, 120.Google Scholar
3. Ali, N. J. and Milne, S. J., J. Am. Ceram. Soc., 76, 2321 (1993).CrossRefGoogle Scholar
4. Belenov, K. V., Goloborod'ko, E. A., Zavadovskii, O. E.,Kontsevoi, Yu. A., Mukhortov, V. M., and Tikhodeev, Yu. S., Sov. Phys. Tech. Phys., 29, 1037 (1984).Google Scholar
5. Surowiak, Z., Nikitin, Y. S., Biryukov, S. V., Golovko, I. I., Mukhortov, V. M., and Dudkevich, V. P., Thin Solid Films, 208, 76 (1992).CrossRefGoogle Scholar
6. Summerfelt, S. R., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F.C., Harbison, J. P., Peercy, P. S., and Zangwill, A. (Mat. Res. Soc. Proc. 221, Pittsburgh, PA, 1991) pp. 2934.Google Scholar
7. Roy, D. and Krupanidhi, S. B., Appl. Phys. Lett., 62, 1056 (1993).Google Scholar
8. Carroll, K. R., Pond, J. M., Chrisey, D. B., Horwitz, J. S., Leuchtner, R. E., and Grabowski, K. S., Appl. Phys. Lett., 62, 1845 (1993); 63, 1291(E) (1993).CrossRefGoogle Scholar
9. Mehrotra, V., Kaplan, S., Sievers, A. J., and Giannelis, E. P., J. Mater. Res., 8, 1209 (1993).Google Scholar
10. Feil, W. A., Wessels, B. W., Tonge, L. M., and Marks, T. J., J. Appl. Phys., 67, 3858 (1990).Google Scholar
11. Kwak, B. S., Zhang, K., Boyd, E. P., Erbil, A., and Wilkens, B. J., J. Appl. Phys., 69, 767 (1991).CrossRefGoogle Scholar
12. Wills, L. A., Wessels, B. W., Richeson, D. S., and Marks, T. J., Appl. Phys. Lett., 60, 41 (1992).Google Scholar
13. VanBuskirk, P. C., Gardiner, R., Kirlin, P. S., and Nutt, S., J. Mater. Res., 7, 542 (1992).Google Scholar
14. Chern, C. S., Zhao, J., Luo, L., Lu, P., Li, Y. Q., Norris, P., Kear, B., Cosandey, F., Maggiore, C. J., Gallois, B., and Wilkens, B. J., Appl. Phys. Lett., 60, 1144 (1992).CrossRefGoogle Scholar
15. Kim, T. W., Jung, M., Koon, Y. S., Kang, W. N., Shin, H. S., Yom, S. S., Lee, J. Y., Sol. St. Comm., 86, 565 (1993).CrossRefGoogle Scholar
16. Wessels, B. W., Wills, L. A., Lu, H. A., Gilbert, S. R., Neumayer, D. A., and Marks, T. J., in CVD XII, edited by Jensen, K. (Electrochemical Society N.J., 1993).Google Scholar
17. Wills, L. A. and Wessels, B. W., in Ferroelectrics III, edited by Meyer, E. (Mat. Res. Soc. Proc. 310, Pittsburgh, PA, 1993).Google Scholar
18. Syamaprasad, U., Galgali, R. K., and Mohanty, B. C., Mat. Lett., 7, 197 (1988).Google Scholar
19. Wu, S. Y., IEEE Trans. Elect. Dev., 21, 499 (1974).Google Scholar
20. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (John Wiley and Sons, New York, 1981), p. 390.Google Scholar
21. Lampe, D. R., Adams, D. A., Austin, M., Polinsky, M., Dzimianski, J., Sinharoy, S., Buhay, H., Brabant, P., Liu, Y. M., Ferroelectrics, 133, 61 (1992).CrossRefGoogle Scholar