Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:45:16.875Z Has data issue: false hasContentIssue false

Preparation, Characterization and Optical Properties of Zinc Oxide Nanoparticles

Published online by Cambridge University Press:  15 February 2011

Shoutian Li
Affiliation:
Department of Chemistry, Virginia Commonwealth University Richmond, VA 23284–2006
Stuart J. Silvers
Affiliation:
Department of Chemistry, Virginia Commonwealth University Richmond, VA 23284–2006
M. Samy El-Shall
Affiliation:
Department of Chemistry, Virginia Commonwealth University Richmond, VA 23284–2006
Get access

Abstract

ZnO nanoparticles are produced by the laser vaporization-controlled condensation technique. These particles are connected in a web-like agglomeration. Their properties are compared to those of ZnO nanoparticles produced by solution sol-gel and reverse micelle techniques. All particles have the bulk crystal structure and show quantum size effects in absorption and emission. They show emissions that consist of a blue bandgap feature with a sub-nanosecond lifetime and a green feature with multiexponential lifetime decays. Emission from the stearate coated particles produced by the reversed micelle method is particularly intense.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

To whom inquiries should be addressed.

References

REFERENCES

1.Kamat, P.V., Chem. Rev. 93, 267 (1993).Google Scholar
2.Henglein, A., Chem. Rev. 89, 1861 (1989).Google Scholar
3.Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., Chem. Rev. 95, 69 (1995).Google Scholar
4.Bahnemann, D.W., Kormann, C., and Hoffmann, M.R., J. Phys. Chem. 91, 3789 (1987).Google Scholar
5.Koch, U., Fojtik, A., Weller, H., and Henglein, A., Chem. Phys. Lett., 122, 507 (1985).Google Scholar
6.Haase, M., Weiler, H., and Henglein, A., J. Phys. Chem. 92, 482 (1988).Google Scholar
7.Spanel, L. and Anderson, M.J., J. Am. Chem. Soc. 113, 2826 (1991).Google Scholar
8.Brus, L.E., J. Chem. Phys. 80, 4403 (1984).Google Scholar
9.Bras, L., J. Phys. Chem. 90, 2555 (1986).Google Scholar
10.El-Shall, M.S., Slack, W., Vann, W., Kane, D. and Hanley, D., J. Phys. Chem. 98, 3067 (1994).Google Scholar
11.El-Shall, M.S., Li, S., Turkki, T., Graiver, D., Pernisz, U.C., and Baraton, M.A., J. Phys. Chem. 99, 17805 (1995).Google Scholar
12.El-Shall, M.S., Li, S., Graiver, D., and Pernisz, U.C. in “Nanotechnologv - Molecularlv Designed Materials”, edited by Chow, G.M. and Gonsalves, K.E. (ACS Symposium Series 622, American Chemical Society, Washington, DC 1996), p. 79.Google Scholar
13.Joselevich, E. and Willner, I., J. Phys. Chem. 98, 7628 (1994).Google Scholar
14.Li, S., Zou, B.S., Yang, Y., Xiao, L., Li, T., Zhao, J., Huang, S., and Yu, J., J. Chem. J. Chin. Univ. 13, 1597 (1992).Google Scholar
15.Hoffman, A.J., Mills, G., Yee, H., and Hoffmann, M.R., J. Phys. Chem. 96, 5546 (1992).Google Scholar
16.Hagfeldt, A. and Gratzel, M., Chem. Rev. 95, 49 (1995).Google Scholar
17.Wang, Y. and Herron, N., Phys. Rev. B 42, 7253 (1990).Google Scholar
18.Brus, L., Szajowski, P.F., Wilson, W.L., Harris, T.D., Schuppler, S., and Citrin, S., J. Am. Chem. Soc. 117, 2915 (1995).Google Scholar
19.Kamat, P.V. and Patrick, B., J. Phys. Chem. 96, 6329 (1992).Google Scholar
20.Chestnoy, N., Harris, T.D., Hull, R., and Brus, L.E., J. Phys. Chem. 90, 3393 (1986).Google Scholar