Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:39:43.935Z Has data issue: false hasContentIssue false

Preparation, Characterization and Catalytic Activity of Niobium Oxynitride and Oxycarbide in Hydrotreatment

Published online by Cambridge University Press:  15 February 2011

H. S. Kim
Affiliation:
Université P&M Curie, Laboratoire Réactivité de Surface, CNRS URA 1106, 4, Place Jussieu, Case 178, 75252 Paris Cedex 05, France
C. Sayag
Affiliation:
Université P&M Curie, Laboratoire Réactivité de Surface, CNRS URA 1106, 4, Place Jussieu, Case 178, 75252 Paris Cedex 05, France
G. Bugli
Affiliation:
Université P&M Curie, Laboratoire Réactivité de Surface, CNRS URA 1106, 4, Place Jussieu, Case 178, 75252 Paris Cedex 05, France
G. Djega-Mariadassou
Affiliation:
Université P&M Curie, Laboratoire Réactivité de Surface, CNRS URA 1106, 4, Place Jussieu, Case 178, 75252 Paris Cedex 05, France
M. Boudart
Affiliation:
Stanford University, Laboratory of Chemical Engineering, Stanford, CA 94305
Get access

Abstract

Oxynitride and oxycarbide of niobium present metallic and acidic catalytic functions as evidenced by molecular probe reactions: isomerization of cyclohexane and hydrodenitrogenation of 1–4 tetrahydroquinoline. The proximity of the two functions leads to the concept of “dual site” by selective inhibition of the metallic and acid sites. Substitution of nitrogen of the oxynitride by carbon to form the oxycarbide produces a large enhancement of the metallic character of the surface. The oxynitride was shown to present a more acidic and a less hydrogenating activity as compared to the activity of the oxycarbide. Both compounds of niobium have been compared to molybdenum oxynitride.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Levy, R.B. and Boudart, M., Science, 181, 547 (1973).Google Scholar
2 Ribeiro, F.H., Betta, R. Dalla, Boudart, M., Baumgartner, J. and Iglesia, E., J. Catal. 130, 86 (1991).Google Scholar
3 Frennet, A., Leclercq, G., Maire, G. and Bouillon, F., in Proceed. 10th Intern. Congr. Catalysis, (Budapest, 1992), p 144.Google Scholar
4 Ledoux, M.J., Huu, C.P., Dunlop, H., Guille, J., in Proceed. 10th Intern. Congr. Catalysis, (Budapest, 1992), p 149.Google Scholar
5 Keller, V., Strasbourg University Thesis (1993).Google Scholar
6 Volpe, L. and Boudart, M., J. Solid State Chem. 59, 332 (1985).Google Scholar
7 Lee, J.S., Oyama, S.T. and Boudart, M., J. Catal. 106, 125 (1987).Google Scholar
8 Sayag, C., P&MCurie (Paris VI) University Thesis (1993).Google Scholar
9 Schlatter, J.C., Oyama, S.T., Metcalfe, J.E. and Lambert, J.M. Jr., Ind. Eng. Chem. Res. 27, 1648 (1988).Google Scholar
10 Boudart, M. and Djéga-Mariadassou, G., Kinetics of Heterogeneous Catalytic Reactions, Princeton University Press, Princeton, N.J. (1984).Google Scholar
11 Gouin, X., Rennes University Thesis (1993).Google Scholar
12 Gouin, X., Marchand, R., L'Haridon, P. and Laurent, Y., J. Solid State Chem. 109, 175 (1994).Google Scholar
13 Lee, K.S., Abe, H., Reimer, J.A. and Bell, A.T., J. Catal. 139, 34 (1993).Google Scholar
14 Kim, H.S., University P&M Curie (Paris VI) Thesis, 1993.Google Scholar