Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:29:39.988Z Has data issue: false hasContentIssue false

Preparation and Sintering of Silica-Doped Zirconia by Colloidal Processing

Published online by Cambridge University Press:  10 February 2011

T. Uchikoshi
Affiliation:
National Research Institute for Metals, 1–2–1, Sengen, Tsukuba, Ibaraki 305, Japan
Y. Sakka
Affiliation:
National Research Institute for Metals, 1–2–1, Sengen, Tsukuba, Ibaraki 305, Japan
K. Ozawa
Affiliation:
National Research Institute for Metals, 1–2–1, Sengen, Tsukuba, Ibaraki 305, Japan
K. Hiraga
Affiliation:
National Research Institute for Metals, 1–2–1, Sengen, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Silica-doped (SiO2= 0–1.0 mass%) zirconia (3 mol% Y2O3-doped tetragonal ZrO2) compacts are prepared from hetero-coagulated and well-dispersed suspensions by colloidal processing. The suspensions are consolidated by a pressure filtration technique. The green density of the compacts consolidated from the well-dispersed suspensions is higher than that from the hetero-coagulated suspensions. The lower density of the latter compacts is improved by a subsequent cold isostatic pressing (CIP) at 400 MPa. The sinterability of the compacts at 1200 °C is greatly affected by the amount of doped silica. The densification and grain growth are hindered by silica doping above 0.3 wt% at 1200 °C. All the compacts are densificated to a relative density of above 99% by sintering at 1300 °C for 2 h.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wakai, F., Sakaguchi, S. Matsuno, Y., Advanced Ceramic Materials 1, 259 (1986).Google Scholar
2. Wakai, F., Sakaguchi, S. and Kato, H., J.Ceram. Soc. Jpn. 94, 721 (1986).Google Scholar
3. Wakai, F., Tetsu-to-Hagané, 75, 389 (1989).Google Scholar
4. Nieh, T. G. and Wadsworth, J., Acta metall. mater. 38, 1121 (1990).Google Scholar
5. Verkerk, M. J., Winnubst, A. J. A. and Burggraaf, A. J., J. Mat. Sci. 17, 3113 (1982).Google Scholar
6. Miyayama, M., Yanagida, H. and Asada, A., Am. Ceram. Soc. Bull. 64, 660 (1985).Google Scholar
7. Kajihara, K., Yoshizawa, Y. and Sakuma, T., Acta metall. mater. 43, 1235 (1995).Google Scholar
8. Hiraga, K., Yasuda, H., Nakano, K., Takakura, E. and Sakká, Y., Abst. 118th. Meetings Jpn. Inst. Met. (1996) p. 250.Google Scholar
9. Schilling, C. H. and Aksay, I. A., Engineered MaterialsHandbook Vol. 4. Ceramics And Grasses. ASM international, (1991) pp. 153160.Google Scholar
10. Lange, F. F. and Miller, K.T., Am. Ceram. Soc. Bull. 66, 1498 (1987).Google Scholar
11. Lange, F. F., J. Am. Ceram. Soc. 72, 3 (1989).Google Scholar
12. Uchikoshi, T., Sakka, Y., Okuyama, H. and Ozawa, K., J. Jpn. Soc. Powder and Powder Metall. 42, 309 (1995).Google Scholar
13. Uchikoshi, T., Sakka, Y. and Ozawa, K., Proc. 5th. World Congr. Chem. Eng. Vol IV (1996) pp. 10071012.Google Scholar
14. Leong, Y. K., Scales, P. J., Healy, T. W. and Boger, D. V., Colloids and Interfaces A 95, 43 (1995).Google Scholar
15. Okada, K. and Sakuma, T., British Ceram. Trans. 93, 71 (1994).Google Scholar