Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T16:48:08.107Z Has data issue: false hasContentIssue false

Preparation and Properties of PVC-Silica Composites using Different Catalysts Via Sol-Gel Process

Published online by Cambridge University Press:  10 February 2011

Khan M. Asif
Affiliation:
Chemistry Department, Kansas State University, Manhattan, KS 66506, [email protected]
M.I. Sarwar
Affiliation:
Chemistry Department, Quaid-i-Azam University, Islamabad, PAKISTAN
Z. Ahmad
Affiliation:
Chemistry Department, Quaid-i-Azam University, Islamabad, PAKISTAN
Get access

Abstract

Novel micro-composites from Polyvinyl chloride (PVC) and silica were prepared using sol-gel technique. Different catalysts were used for the in-situ generation of silica network from tetraethylorthosilicate (TEOS) in the PVC matrix. Thin transparent films containing various proportions of silica in PVC were cast by the solvent elution technique. Mechanical properties of these films were studied. The results showed an increase in the value of Young's modulus and strain at rupture by the addition of small amount of silica in PVC. However, the stress at yields point and stress at rupture decreased with the addition of silica contents. Scanning electron microscopy (SEM-EDAX) studies were also performed on these samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brinker, C. J. and Scherer, G. W., in Sol-Gel Science: the Physics and Chemistry of So-Gel Processing (Academic Press, Boston, 1990).Google Scholar
2. Mark, J. E., J. Inorg. Organomet. Polym. 1, 431 (1993).10.1007/BF00683510Google Scholar
3. Schmidt, H., J. Sol-Gel Sci. and Tech. 1, 217 (1994).10.1007/BF00486165Google Scholar
4. Betrabet, S. C. and Wilkes, G. L., J. Inorg. Organomet. Polym. 4, 343 (1994).10.1007/BF00683700Google Scholar
5. Schmidt, H., Kasemann, R., Burkhart, T., Wagner, G., Arpac, E. and Geiter, E. in Hybrid Organic-Inorganic Composites (ACS Symp. Ser., 1995) p. 331.10.1021/bk-1995-0585.ch026Google Scholar
6. Gaw, K., Suzuki, H., Kakimoto, M., and Imai, Y., J. Photopolym. Sci. Technol. 8, 307 (1995).10.2494/photopolymer.8.307Google Scholar
7. Kita, H., Saiki, H., Tanaka, K., and Okamoto, K., J. Photopolym. Sci. Technol. 8, 315 (1995).10.2494/photopolymer.8.315Google Scholar
8. Phillip, G. and Schmidt, H., J. Non-Cryst. Solids 63, 283 (1984).10.1016/0022-3093(84)90407-1Google Scholar
9. Ahmad, Z., Wang, S. and Mark, J. E., in Better Ceramics Through Chemistry: Part VI edited by Sanchez, C., Brinker, C. J., Mecartney, M. L., and Cheetham, A. (Mater. Res. Soc. Proc. Pittsburgh, PA, 1994).Google Scholar
10. Ahmad, Z., Sarwar, M. I. and Mark, J. E., J. Appl. Polym. Sci. 63, 1345 (1997).10.1002/(SICI)1097-4628(19970307)63:10<1345::AID-APP14>3.0.CO;2-33.0.CO;2-3>Google Scholar
11. Sarwar, M. I. and Ahmad, Z., Adv. Mater. -97 (Proc. Int. Symp.), 5th, 7377 (1997).Google Scholar
12. Abmad, Z., Sarwar, M. I., Wang, S. and Mark, J. E., Polymer 38 (17), 4523 (1997).Google Scholar
13. Rehman, H. U., Sarwar, M. I., Ahmad, Z., Krug, H. and Schmidt, H., J. Non-Cryst. Solids 211, 105 (1997).10.1016/S0022-3093(96)00614-XGoogle Scholar
14. Ahmad, Z., Sarwar, M. I., Krug, H. and Schmidt, H., Die Angew. Makromol Chemie 248, 139 (1997).10.1002/apmc.1997.052480109Google Scholar
15. Wang, S., Ahmad, Z. and Mark, J. E., Polym. Mater. Sci. Eng. 70 (1), 305 (1994).Google Scholar
16. Ahmad, Z., Wang, S. and Mark, J. E., Polym. Mater. Sci. Eng. 70 (1), 303 (1994).Google Scholar
17. Ahmad, Z., Wang, S. and Mark, J. E., in Hybrid Organic-Inorganic Composites, edited by Biancni, P. A. et al, (ACS Symp. Ser., 1995) 585, Washington, DC, Chapter 22, pp. 291.Google Scholar
18. Asif, Khan M., Sarwar, M. I., Rafiq, S. and Ahmad, Z., Polymer Bulletin 40, 583590 (1998).10.1007/s002890050294Google Scholar
19. Asif, Khan M., Sarwar, M. I. and Ahmad, Z., Adv. Mater. -97 (Proc. Int. Symp.), 5th, 78–82 (1997).Google Scholar
20. Suzuki, F., Onozato, K. and Kurokawa, Y., J. Appl. Polym. Sci. 39, 371 (1990).10.1002/app.1990.070390214Google Scholar
21. Wang, B., Wilkes, G. L., Smith, C. D. and McGrath, J. E., Polym. Commun. 32, 400 (1991).Google Scholar
22. Mauritz, K. A. and Jones, C. K., J. Appl. Polym. Sci. 41, 1517 (1990).Google Scholar
23. Wang, B., Wilkes, G. L., Hedrick, J. C., Liptak, S. C. and McGrath, J. E., Macromolecules 24, 3449 (1991).10.1021/ma00011a063Google Scholar
24. Phillip, G. and Schmidt, H., J. Non-Cryst. Solids 82, 31 (1986).10.1016/0022-3093(86)90107-9Google Scholar
25. Schmidt, H., Scholze, H. and Tunker, G., J. Non-Cryst. Solids 80, 557 (1986).10.1016/0022-3093(86)90446-1Google Scholar
26. Utamapanaya, S., Klabunde, K. J. and Schlup, J. R., Chem. Mater. 3, 175(1991).10.1021/cm00013a036Google Scholar
27. Langley, N. R., Mbah, G. C., Freeman, H. A., Huang, H., Siochi, E. J., Ward, T. C. and Wilkes, G., J. Colloid Interface Sci. 143, 309 (1991).10.1016/0021-9797(91)90264-9Google Scholar
28. Nandi, M., Conklin, J. A., , L. Salvati Jr and Sen, A., Chem. Mater. 3, 201 (1991).10.1021/cm00013a040Google Scholar
29. Wen, Zhou, Jianhua, Dong and Kunyuan, Qiu, Gaofenzi Xuebao (Chinese) 4, 498501 (1998).Google Scholar
30. Libor, Matejka, Karel, Dusek, Josef, Plestil, Jaroslav, Kriz and Frantisek, Lednicky, Polymer 40 (1), 171181 (1999).Google Scholar
31. Shoichiro, Yano, Keisuke, Iwata and Kimio, Kurita Mater. Sci. Eng. C6 (2,3), 7590 (1998).Google Scholar
32. Wendy, Yuan Q. and Mark James, E Macromol. Chem. Phys. 200 (1), 206220 (1999).Google Scholar