Published online by Cambridge University Press: 10 February 2011
The organic-inorganic polymer hybrids consisting of carbon-carbon and siloxane chains were prepared by radical polymerization of vinyltrimethoxysilane (VTS) and 3-methacryloxypropyltrimethoxysilane (MAS) followed by hydrolytic polycondensation. Polyvinyltrimethoxysilane (PVTS) and poly(3-methacryloxypropyltrimethoxysilane) (S-PMA) with various molecular weights Mw=3900–64800 were prepared by polyaddition of VTS and MAS, respectively. PVTS and S-PMA provided transparent and flexible free-standing films and coating films. With increasing carbon-carbon chain length, the elasticity of the films increased, while the tensile strength and Young's modulus decreased. The adhesive strength of the coating films on organic substrates was particularly dependent on the solubility parameter, polarity and crystallinity of each substrate. The pencil-hardness of coating films was clearly increased with increasing degree of condensation of sila-functional group in PVTS and S-PMA.