Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T00:11:18.235Z Has data issue: false hasContentIssue false

Preparation and Characterization of 1-3 BaTiO3-PVDF Hybrid Nanocomposites

Published online by Cambridge University Press:  14 December 2012

A.A. Rodríguez-Rodríguez
Affiliation:
Centro de Investigación en Química Aplicada. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coah., México.
N.A. Morales-Carrillo
Affiliation:
Centro de Investigación en Química Aplicada. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coah., México.
C. Gallardo-Vega
Affiliation:
Centro de Investigación en Química Aplicada. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coah., México.
G.F. Hurtado-López
Affiliation:
Centro de Investigación en Química Aplicada. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coah., México.
J.A. Cepeda-Garza
Affiliation:
Centro de Investigación en Química Aplicada. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coah., México.
V. Corral-Flores*
Affiliation:
Centro de Investigación en Química Aplicada. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coah., México.
*
*Contact author’s e-mail: [email protected]
Get access

Abstract

1-3 BaTiO3-PVDF hybrid nanocomposites were prepared by combining electrospinning, sol-gel and spin-coating techniques. First, one-dimensional structures of barium titanate (BaTiO3) were obtained by electrospinning. An alcoholic solution consisting of Ba2+ and Ti4+ions (1:1 molar ratio) and poly(vinylpyrrolidone) was electrospun at 15 kV, with a tip-to-collector distance of 15 cm and a feed rate of 0.5 mL/h. Ceramic fibers were obtained after sintering the as-spun fibers at 900 °C for 2 hours. In a second step, poly(vinylidene fluoride) (PVDF) was incorporated to the oxide fibers by spin-coating a dimetilformamide solution, thus conforming 1-3 ceramic-polymeric hybrid nanocomposites on stainless steel substrates.

Scanning electron microscopy images showed that the as-spun fibers were smooth, long and continuous with an average diameter of 155 ± 40 nm, ranging from 60 to 240 nm, while sintered fibers presented a reduction in size, with an average diameter of 115 ± 16 nm, ranging from 96 to 120 nm. Sintered nanofibers were also long and continuous but with a rough surface. X-ray diffraction confirmed the perovskite-type structure of the BaTiO3. A structure refinement revealed a degree of tetragonality of 1.0046.

The polymer crystalline phases were identified by infrared spectroscopy on ATR mode. This study showed the presence of both β and γ polar phases, and absence of non-polar α phase, according to the characteristic bands for such crystalline phases.

The nanocomposites exhibited a ferroelectric behavior and electrical polarization according to their ceramic and polymeric components.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kundu, T. K., Jana, A. & Barik, P., Bull. Mater. Sci. 31, 501502 (2008).CrossRefGoogle Scholar
Khalil, K., Mat. Res. Innovat 2, 256262 (1999).CrossRefGoogle Scholar
Li, H., Wu, H., Lin, D. & Pan, W., J. Am. Ceram. Soc. 92, 21622164 (2009).CrossRefGoogle Scholar
Smith, M.B., Page, K., Siegrist, T., Redmond, P.L., Walter, E.C., Seshadri, R., Brus, L.E., and Steigerwald, M.L., J. AM. Chem. Soc. 130, 69556963 (2008).CrossRefGoogle Scholar
Silva, A.B., Wisniewski, C., Esteves, J.V.A., R.G. Jr., J. Mater. Sci. 45, 42064215 (2010).CrossRefGoogle Scholar
Ramasundaram, S., Yoon, S., Kim, K. J., Lee, J.S., Macromol. Chem. Phys. 200, 25162526 (2008).CrossRefGoogle Scholar
Gregorio, R., Cestari, M., Polym, J.. Sci. Part B: Polym. Phys. 32, 859 (2004).CrossRefGoogle Scholar