Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:08:08.208Z Has data issue: false hasContentIssue false

Preferred Orientations in Metal/Non-Metal Interface Systems

Published online by Cambridge University Press:  25 February 2011

K. McCafferty
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Canada, K7L3N6
A. Soper
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Canada, K7L3N6
J. Shirokoff
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champagne, Urbana, USA, 61801
U. Erb
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Canada, K7L3N6
Get access

Abstract

Results of recent studies of preferred orientations for metal/non-metal interface systems are presented and discussed in terms of some of the general concepts derived from interface structure models. The limitations of geometric models used to predict preferred orientations for metal/ionic crystal interfaces are demonstrated, and the effects of temperature and impurity segregation on the low energy interfaces for metal/glass interfaces are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watanabe, T., Res Mechanica 11, 47 (1984).Google Scholar
2. Palumbo, G. and Aust, K.T., Proc. Int. Symp. Struc. Materials vol.9, edited by Wilkinson, D. (Pergamon Press, Toronto, 1989), p.215.Google Scholar
3. Harase, J., Shimizu, R. and Takahshi, N., Acta Metall. 38, 1849 (1990).Google Scholar
4. Palumbo, G., King, P.J., Aust, K.T., Erb, U. and Lichtenberger, P.C., Scripta Metall. 25, 1775 (1991).Google Scholar
5. Shirokoff, J., Cheung, J. and Erb, U., Acta Metall. 38, 1273 (1990).Google Scholar
6. Sutton, A.P. and Balluffi, R.W., Acta Metall. 35, 2177 (1987).Google Scholar
7. Shirokoff, J. and Erb, U., Scripta Metall. 20, 1607 (1986).Google Scholar
8. Matthews, J.W., J. Vacuum Sci. Tech. 3, 133 (1966).Google Scholar
9. Robbins, J.L. and Gates, A.D., Vacuum 41, 1094 (1990).CrossRefGoogle Scholar
10. Seeger, A. and Schottky, G., Acta Metall. 7, 495 (1959).Google Scholar
11. Barna, A., Barna, P.B. and Pocza, J.F., Thin Solid Films 4, R32 (1969).Google Scholar
12. Gerasimov, Y.M. and Distler, G.I., Naturwissenschaften 55, 132 (1968).Google Scholar
13. Distler, G.I., Kobzareva, S.A. and Gerasimov, Y.M., J. Crystal Growth 2, 45 (1968).Google Scholar
14. Distler, G.I. and Obronov, V.G., Nature (London) 224, 261 (1968).Google Scholar
15. Shirokoff, J. and Erb, U., to be published.Google Scholar
16. Shirokoff, J., Hui, K.C. and Erb, U., J. Physique 49, C5165 (1988).Google Scholar
17. Shirokoff, J. and Erb, U., Phil. Mag. Lett. 58, 255 (1988).CrossRefGoogle Scholar
18. Erb, U. and Gleiter, H., Scripta Metall. 13, 61 (1979).CrossRefGoogle Scholar
19. Fecht, H.J. and Gleiter, H., Acta Metall. 33, 557 (1985).Google Scholar
20. Fecht, H.J., J. Physique 49, C5171 (1988).Google Scholar
21. Hart, E.W., Scripta Metall. 2, 179 (1968).Google Scholar
22. Rottman, C., J. Physique 49, C5313 (1988).Google Scholar
23. McCafferty, K., Soper, A., Cheung, C., Shirokoff, J. and Erb, U., submitted to Scripta Met.Google Scholar
24. Thackery, P.A. and Nelson, R.S., Phil. Mag. A 19, 169 (1969).Google Scholar
25. McCormick, M.A., Evans, E.B. and Erb, U., Phil. Mag. A 53, L27 (1986).Google Scholar
26. Sautter, H., Gleiter, H. and Baro, G., Acta. Metall. 25, 467 (1977).Google Scholar
27. Soper, A. and Erb, U., to be published.Google Scholar