Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:05:10.289Z Has data issue: false hasContentIssue false

Preferential Growth of Carbon Nanotubes/Nanofibers Using Lithographically Patterned Catalysts

Published online by Cambridge University Press:  21 March 2011

K. B. K. Teo
Affiliation:
Engineering Department, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
M. Chhowalla
Affiliation:
Engineering Department, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
G. A. J. Amaratunga
Affiliation:
Engineering Department, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
W. I. Milne
Affiliation:
Engineering Department, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
G. Pirio
Affiliation:
Thales Laboratoire Central de Recherches, Domaine de Corbeville, 91404 Orsay Cedex, France
P. Legagneux
Affiliation:
Thales Laboratoire Central de Recherches, Domaine de Corbeville, 91404 Orsay Cedex, France
F. Wycisk
Affiliation:
Thales Laboratoire Central de Recherches, Domaine de Corbeville, 91404 Orsay Cedex, France
D. Pribat
Affiliation:
Thales Laboratoire Central de Recherches, Domaine de Corbeville, 91404 Orsay Cedex, France
Get access

Abstract

In order to utilise the full potential of carbon nanotubes/nanofibers, it is necessary to be able to synthesize well aligned nanotubes/nanofibres at desired locations on a substrate. This paper examines the preferential growth of aligned carbon nanofibres by PECVD using lithographically patterned catalysts. In the PECVD deposition process, amorphous carbon is deposited together with the nanotubes due to the plasma decomposition of the carbon feed gas, in this case, acetylene. The challenge is to uniformly nucleate nanotubes and reduce the unwanted amorphous carbon on both the patterned and unpatterned areas. An etching gas (ammonia) is thus also incorporated into the PECVD process and by appropriately balancing the acetylene to ammonia ratio, conditions are obtained where no unwanted amorphous carbon is deposited. In this paper, we demonstrate high yield, uniform, ‘clean’ and preferential growth of vertically aligned nanotubes using PECVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, Ph., Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
2. Kruger, M., Buitelaar, M. R., Nussbaumer, T., Schonenberger, C., and Forro, L., Appl. Phys. Lett. 78, 1291 (2001).Google Scholar
3. Liu, K., Burghard, M., Roth, S., and Bernier, P., Appl. Phys. Lett. 75, 2494 (1999).Google Scholar
4. Tombler, W., Zhou, C., and Dai, H., Appl. Phys. Lett. 76, 2412 (2000).Google Scholar
5. Dai, H., Franklin, N., and Han, J., Appl. Phys. Lett. 73, 1508 (1998).Google Scholar
6. Nishijima, H.., Kamo, S., Akita, S., Nakayama, Y., Hohmura, K. I., Yoshimura, S. H., and Takeyasu, K., Appl. Phys. Lett. 74, 4061 (1999).Google Scholar
7. Cheung, C. L., Hafner, J. H., Odom, T. W., Kim, K., and Lieber, C. M., Appl. Phys. Lett. 76, 3136 (2000).Google Scholar
8. de Heer, W. A., Chatelaine, A., and Ugarte, D., Science 270, 1179 (1995).Google Scholar
9. Bonard, J. M., Salvetat, J. P., Stockli, T., Forro, L., and Chatelain, A., Appl. Phys. A 69, 245 (1999).Google Scholar
10. Collins, P. G. and Zettl, A., Appl. Phys. Lett. 69, 1969 (1996).Google Scholar
11. Frackowiak, E., Metenier, K., Bertagna, V., and Beguin, F., Appl. Phys. Lett. 77, 2421 (2000).Google Scholar
12. Ijima, S., Nature 363, 603 (1993).Google Scholar
13. Ijima, S. and Ichihashi, T., Nature 363, 603 (1993).Google Scholar
14. Journet, C., Maser, W. K., Bernier, P., Loiseau, A., delaChappelle, M. L., Lefrant, S., Deniard, P., Lee, R., and Fischer, J. E., Nature 388, 756 (1997).Google Scholar
15. Thess, A., Lee, R., Nikolaev, P., Dai, H. J., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzer, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., and Smalley, R. E., Science 273, 483 (1996).Google Scholar
16. Journet, C. and Bernier, P., Appl. Phys. A 67, 1 (1998).Google Scholar
17. Cassell, A. M., Raymakers, J. A., Kong, J., and Dai, H. J., J. Phys. Chem. 103, 6484 (1999).Google Scholar
18. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 1105 (1998).Google Scholar
19. Merkulov, V. I., Lowndes, D. H., Wei, Y. Y., Eres, G., and Voelkl, E., Appl. Phys. Lett. 76, 3555 (2000).Google Scholar
20. Murakami, H., Hirakawa, M., Tanaka, C., and Yamakawa, H., Appl. Phys. Lett. 76, 1776 (2000).Google Scholar
21. Bower, C., Zhu, W., Jin, S., and Zhou, O., Appl. Phys. Lett. 77, 830 (2000).Google Scholar
22. Sohn, J. I., Lee, S., Song, Y. H., Choi, S. Y., Cho, K. I., and Nam, K. S., Appl. Phys. Lett. 78, 901 (2001).Google Scholar
23. Chhowalla, M., Teo, K. B. K., Ducati, C., Rupesinghe, N. L., Amaratunga, G. A. J., Ferrari, A. C., Roy, D., Robertson, J., and Milne, W. I., Appl, J.. Phys., submitted.Google Scholar
24. Rao, A. M., Jacques, D., Haddon, R. C., Zhu, W., Bower, C., and Jin, S., Appl. Phys. Lett. 76, 3813 (2000).Google Scholar
25. Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., Hasko, D. G., Pirio, G., Legagneux, P., Wycisk, F., and Pribat, D., Appl. Phys. Lett., submitted. Google Scholar