Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:21:14.254Z Has data issue: false hasContentIssue false

Preferential CO2 Separation over H2 with Poly(amidoamine) Dendrimer-Containing Polymeric Membrane

Published online by Cambridge University Press:  28 March 2014

Ikuo Taniguchi
Affiliation:
Intenational Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-3095, Japan
Shigenori Fujikawa
Affiliation:
Intenational Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-3095, Japan
Get access

Abstract

Development of effective CO2 separation technologies is one of the most critical issues for implementation of CO2 Capture & Storage (CCS) because CO2 capturing covers about 60 % of the total CCS cost. CO2 capturing with solution absorption technology has gained current acceptance, and the actual operations have been demonstrated in many countries. However, This technology requires certain amount of energy in recovering CO2 from the CO2-capturing solution, which results in developing alternative CO2 capturing technologies. Because difference in partial pressure of the interest gas between feed and permeate side drives the separation, membrane separation does not need additional energy and can make CO2 separation much more effective. ☐In pre-combustion such as an integrated gasification combined cycle (IGCC) plant, CO2/H2 gas mixture after water-gas shift reaction has a pressure of 2.4 MPa, which would be preferable for membrane separation. Various membranes for CO2 separation over H2 have been investigated, however, the membrane separation has not been implemented due to lack in CO2 selectivity or permeability. In this paper, poly(amidoamine) (PAMAM) dendrimer is used to enhance affinity to CO2 and incorporated in a polymer matrix. The resulting polymeric membrane expressed excellent CO2 separation properties even under pressure. The CO2 permeance is relatively lower than the requirement value and 1.0 x 10-10 m3(STP)/(m2 s Pa). However, the permeance can be enhanced by reducing membrane thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lin, H., Wagner, E. V., Freeman, B. D., Toy, L. G., Gupta, R. P., Science 311, 639 (2006).10.1126/science.1118079CrossRefGoogle Scholar
Yegani, R., Hirozawa, H., Teramoto, M., Himei, H., Okada, O., Takigawa, T., Ohmura, N., Matsumiya, N., Matsuyama, H., J. Membre. Sci. 291, 157 (2007).10.1016/j.memsci.2007.01.011CrossRefGoogle Scholar
Zhao, Y., Ho, W. S. W., J. Membre. Sci. 415-416, 132 (2012).10.1016/j.memsci.2012.04.044CrossRefGoogle Scholar
Carlisle, T. K., Nicodemus, G. D., Gin, D. L., Noble, R. D., J. Membre. Sci. 397-398, 24 (2012).10.1016/j.memsci.2012.01.006CrossRefGoogle Scholar
Barker, R. W., Membrane Technology and Applications, (Wiley, New York, 2004).10.1002/0470020393CrossRefGoogle Scholar
Kovvali, A. S., Chen, H., Sirkar, K. K., J. Am. Chem. Soc. 122, 7594 (2000).10.1021/ja0013071CrossRefGoogle Scholar
Duan, S., Kouketsu, T., Kazama, S., Yamada, K., J. Membr. Sci. 283, 2 (2006).10.1016/j.memsci.2006.06.026CrossRefGoogle Scholar
Duan, S., Taniguchi, I., Kai, T., Kazama, S., J. Membr. Sci. 423-424, 107 (2012).10.1016/j.memsci.2012.07.037CrossRefGoogle Scholar
Taniguchi, I., Duan, S., Kazama, S., Fujioka, Y., J. Membr. Sci. 322, 277 (2008).10.1016/j.memsci.2008.05.067CrossRefGoogle Scholar
Taniguchi, I., Kazama, S., Jinnai, H., J. Polym. Sci. Part B, Polym. Phys. 50, 1156 (2012).10.1002/polb.23095CrossRefGoogle Scholar
Taniguchi, I., Urai, H., Kai, T., Duan, S., Kazama, S., J. Membr. Sci. 444, 96 (2013).10.1016/j.memsci.2013.05.017CrossRefGoogle Scholar
Taniguchi, I., Duan, S., Kai, T., Kazama, S., Jinnai, H., J. Mater. Chem. A 1, 14514 (2013).10.1039/c3ta13711bCrossRefGoogle Scholar
Nagumo, R., Kazama, S., Fujioka, Y., Energy Procedia 1, 4089 (2009).10.1016/j.egypro.2009.02.216CrossRefGoogle Scholar