Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T14:26:12.040Z Has data issue: false hasContentIssue false

Prediction of Solid-Aqueous Equilibria in Cementitious Systems Using Gibbs Energy Minimization: II. Dual Thermodynamic Approach to Estimation of the Nonideality of End-Member Parameters

Published online by Cambridge University Press:  10 February 2011

D.A. Kulik
Affiliation:
State Scientific Centre for Environmental Radiogeochemistry, 34 Palladin str., 252180 Kyiv, Ukraine; R&D Centre “META”, Minchornobyl Ukraine, 255620 Chornobyl, Ukraine;
V.A. Sinitsyn
Affiliation:
R&D Centre “META”, Minchornobyl Ukraine, 255620 Chornobyl, Ukraine; Institute of Geochemistry, Mineralogy & Ore Formation, NAS Ukraine, 252180 Kyiv, Ukraine;
I.K. Karpov
Affiliation:
Institute of Geochemistry SB RAS, 664033 Irkutsk, Russia
Get access

Extract

Prediction of pathways of radionuclides, heavy metals and other harmful components isolated in cementitious matrices is considered critical in geochemical studies related to hazardous waste disposal [1-3]. Hence, rigorous multi-phase multi-aggregate thermodynamic models with appropriate kinetic and metastability constraints can be very helpful in solving this difficult problem. In a companion contribution [4], we demonstrate that usage of the Gibbs energy minimization (GEM) algorithms permits direct calculation of solid solution – aqueous solution (SSAS) equilibria which adequately describe the solubility data. The suggested "core" thermodynamic dataset can be extended and tuned on the basis of solubility, mineralogical and petrographical studies of fresh, aged and doped cements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Reardon, E., Waste Management 12 (1992).Google Scholar
2 Kersten, M., Environ. Sci. Technol. 30 (1996).Google Scholar
3 Glasser, F., Lachovski, E. and Macphee, D., J. Am. Ceram. Soc. 70 (1987).Google Scholar
4 Sinitsyn, V., Kulik, D. and Karpov, I. (this volume).Google Scholar
5 Nordstrom, D. and Munoz, J., Geochemical Thermodynamics, 2 nd edition (Blackwell, Boston, 1994).Google Scholar
6 Karpov, I., Computer-Aided Physico-Chemical Modelling in Geochemistry (Nauka publ., Novosibirsk, 1981), in Russian.Google Scholar
7 Karpov, I., Chudnenko, K. and Kulik, D., Amer .J .Sci., 297 (1997, in press).Google Scholar
8 Karpov, I., Chudnenko, K., Kulik, D. and Bychinskii, V., Geoch.Cosmoch.Acta (1997, submitted).Google Scholar
9 Karpov, I., Kulik, D. and Chudnenko, K., In: Water-Rock Interaction. 8. Eds: Kharaka, Y., Chudaev, O. (Balkema, Rotterdam, 1995).Google Scholar
10 Kulik, D., In: Water-Rock Interaction. 8. Eds: Kharaka, Y., Chudaev, O. (Balkema, Rotterdam, 1995).Google Scholar
11 Greenberg, S. and Chang, T., J. Phys. Chem. 69 (1965).Google Scholar
12 Kulik, D., Dmitrieva, S., Chudnenko, K. et al., Selektor-A test-version 3.113 for DOS. Integrated program and database to calculate environmental geochemical equilibria by Gibbs energy minimization. Draft User's Manual (Brooklyn-Kiev, 1997).Google Scholar