Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:30:36.100Z Has data issue: false hasContentIssue false

Prediction of High Dose Ion Implantation Profiles as Influenced by Radiation Induced Transport and Sputtering

Published online by Cambridge University Press:  25 February 2011

M. Rangaswamy
Affiliation:
Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
D. Farkas
Affiliation:
Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Get access

Abstract

Various models for predicting high fluence ion collection profiles are reviewed. Recent calculations based on the diffusion approximation are described. The solute and defect probability distributions are calculated by a MONTECARLO code, TRIM. The method takes into account the effects of sputtering, including preferential sputtering of one of the components, and lattice dilation. In addition, the effects of radiation enhanced diffusion and radiation induced segregation are also considered. The calculations include the coupling of solute and defect fluxes. The described formalism can account for observed maximum attainable concentrations and distributions in high fluence implantation conditions of practical interest.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dearnaley, G., Rad. Eff., 63, 1 (1982).Google Scholar
2. Schulz, F. and Wittmaak, K., Radiat. Eff., 29, 31 (1976).Google Scholar
3. Krautle, H., Nucl. Instrum. Methods, 134, 167 (1976).Google Scholar
4. Farkas, D., Singer, I. L., and Rangaswamy, M., J. Appl. Phys., 57, 1114 (1985).Google Scholar
5. Pickering, H. W., J. Vac. Sci. Technol., 13, 618 (1976).Google Scholar
6. Reynolds, G.W., Knudson, A. R. and Gosset, C. R., Nucl. Inst. Meth., 182/183, 179 (1981).Google Scholar
7. Collins, R., Rad. Effects, 37, 13 (1978).Google Scholar
8. Webb, R., Carter, G. and Collins, R., Rad. Effects, 39, 129 (1978).Google Scholar
9. Collins, R., Rad. Eff. Lett., 43, I11 (1979).Google Scholar
10. Carter, G., Webb, R. and Collins, R., Rad. Eff. Lett., 43, 125 (1979).Google Scholar
11. Carter, G., Collins, R. and Thomson, D. A., Rad. Effects, 55, 99 (1981).Google Scholar
12. Marwick, A. D. and Piller, R. C., Radiation Effects, 47, 195 (1980).Google Scholar
13. Johnson, R. A. and Lam, N. Q., Physical Review B, 13, 4364 (1976).Google Scholar
14. Okamoto, P. R. and Rehn, L. E., J. Nucl. Mat., 83, 2 (1979).Google Scholar
15. Wiedersich, H., Okamoto, P. R. and Lam, N. Q., J. Nucl. Mater., 83, 98 (1979).Google Scholar
16. Farkas, D., Pasianot, R., Rangaswamy, M. and Savino, E. J., submitted for publication in J. Appl. Phys.Google Scholar
17. Biersack, J. P. and Haggmark, L. G., Nucl. Inst. Meth., 174, 257 (1980).Google Scholar
18. Grabowski, K. S., Correll, F. D. and Vozzo, F. R., to be published in Nucl. Instr. Meth.Google Scholar
19. Smithells, C. J., “Metals Reference Book”, 3rd edition (Butterworths, Washington, 1962), p. 594.Google Scholar