No CrossRef data available.
Article contents
Prediction of Charge Transport Properties of Molecular Materials by Ab Initio Molecular Orbital Calculations
Published online by Cambridge University Press: 21 March 2011
Abstract
We developed a method to predict the charge transport (CT) type (hole or electron) in molecular materials that uses molecular orbital calculations. The hole-and-electron-mobility ratios of molecular materials were calculated based on molecular structural reorganization energies in a charge hopping process. The CT types predicted from the calculated mobility ratios agreed with those experimentally obtained in seven of the eight model molecules.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001
References
REFERENCES
3.
Sakanoue, K., Motoda, M., Sugimoto, M., and Sakaki, S., J. Phys. Chem. A
103, 5551 (1999).Google Scholar
5.
Zhang, R. Q., Lee, C. S., and Lee, S. T., Appl. Phys. Lett.
75, 2418 (1998); J. Chem. Phys. 112, 8614 (2000); Chem. Phys. Lett. 326, 413 (2000).Google Scholar
7.
Emin, D., in Electronic and Structural Properties of Amorphous Semiconductors, edited by Comber, P. G. Le and Mort, J. (Academic Press, London and New York, 1973), p. 261.Google Scholar
11.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A. Jr., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., and Pople, J. A., Gaussian 98, Revision A.6, Gaussian, Inc., Pittsburgh PA, 1998.Google Scholar
12.
Binkley, J. S., Pople, J. A., and Hehre, W. J., J. Am. Chem. Soc.
102, 939 (1980); M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, 104, 2797 (1982).Google Scholar
14.
Shirota, Y., Kuwabara, Y., Inada, H., Wakimoto, T., Nakada, H., Yonemoto, Y., Kawami, S., and Imai, K., Appl. Phys. Lett.
65. 807 (1994).Google Scholar
15.
Kepler, R. G., Beeson, P. M., Jacobs, S. J., Anderson, R. A., Sinclair, M. B., Valencia, V. S., and Cahill, P. A., Appl. Phys. Lett.
66, 3618 (1995)Google Scholar
17.
Kido, J., Ohtaki, C., Hongawa, K., Okuyama, K., and Nagai, K., Jpn. J. Appl. Phys.
32, L917 (1993).Google Scholar
18.
Hamada, Y.. Sano, T.. Fujita, M.. Fujii, T., Nishio, Y., and Shibata, K., Chem. Lett.
905 (1993).Google Scholar