Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:23:55.406Z Has data issue: false hasContentIssue false

Precursors for the Chemical Vator Deposition of Titanium Nitride and Titanium Aluminum Nitride Films

Published online by Cambridge University Press:  10 February 2011

Charles H. Winter
Affiliation:
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, [email protected]
Peggy J. McKarns
Affiliation:
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, [email protected]
Joseph T. Scheper
Affiliation:
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, [email protected]
Get access

Abstract

Titanium nitride and ternary alloys thereof are of significant interest due to their hardness, chemical resistance, and good electrical conductivity. We report the synthesis, structure, and properties of several new precursors to titanium nitride that are based upon hydrazine-derived ligands. Application of these complexes in titanium nitride film depositions is overviewed. Film properties and characterization are presented. We also describe a new process for the preparation of titanium aluminum nitride films, and focus on how the presence of small amounts of aluminum change the properties of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For leading references, see: Münz, W.D., Hofmann, D. and Hartig, K., Thin Solid films, 96, p. 79 (1982).Google Scholar
2. Buhl, R., Pulker, H.K. and Moll, E., Thin Solid films 80, p. 265 (1981).Google Scholar
3. For leading references, see: Erola, M., Keinonen, J., Anttila, A. and Koskinen, J., Solar Energy Mater. 12, p. 353 (1985).Google Scholar
Schlegel, A., Wachtere, P., Nicki, J.J. and Lingg, H., J. Phys. C: Solid State Phys. 10, p. 4,889 (1977).Google Scholar
4. For leading references, see: Emsberger, C., Nickerson, J., Miller, A. and Banks, D., J. Vac. Sci. Technol. A 3, 2303 (1985).Google Scholar
5. Wittmer, M., Studer, B. and Melchior, H., J. Appl. Phys. 52, p. 5,722 (1981).Google Scholar
6.For example, see: Raaijmakers, I.J., Thin Solid films 247, p. 85 (1994).Google Scholar
Nicolet, M.-A., Thin Solid films 54, p. 415 (1978).Google Scholar
For example, see: Wittmer, M., J. Vac. Sci. Technol. A 3, p 1,797 (1985).Google Scholar
7. Schintlmeister, W., Pacher, O., Pfaffinger, K. and Rames, T., J. Electrochem. Soc. 123, p. 924 (1976).Google Scholar
8. Kurtz, S.R. and Gordon, R.G., Thin Solid films 140, p. 277 (1986).Google Scholar
9. Williams, K.B., Stewart, O., Reck, G.P. and Proscia, J.W., Mater. Res. Soc. Symp. Proc. 327, p. 121 (1993).Google Scholar
10. Fix, R., Gordon, R.G. and Hoffman, D.M., Chem. Mater. 3, p. 1138 (1991).Google Scholar
Hoffman, D.M., Polyhedron 13, p. 1169 (1994).Google Scholar
11. Faltermeier, C., Goldberg, C., Jones, M., Upham, A., Manger, D., Peterson, G., Lau, J., Kaloyeros, A.E., Arkles, B. and Paranjpe, A., J. Electrochem. Soc. 144, p. 1002 (1997).Google Scholar
12. Sugiyama, K., Pac, S., Takahashi, Y. and Motojima, S., J. Electrochem. Soc. 122, p. 1,545 (1975).Google Scholar
13. Fix, R., Gordon, R.G. and Hoffman, D.M., Chem. Mater. 2, p. 235 (1990).Google Scholar
14. Brown, G.M., Inorg. Chem. 28, 3028 (1989).Google Scholar
Ikeda, K., Maeda, M. and Arita, Y., Proc. Symp. VLSI Technol. p. 61 (1990).Google Scholar
15. Carmalt, C.J., Cowley, A.H., Culp, R.D., Jones, R.A., Sun, Y.-M., Fitts, B., Whaley, S. and Roesky, H.W., borg. Chem. 36, p. 3,108 (1997).Google Scholar
16. Winter, C.H., Sheridan, P.H., Lewkebandara, T.S., Heeg, M.J. and Proscia, J.W., J. Am. Chem. Soc. 114, p. 1,095 (1992).Google Scholar
Lewkebandara, T.S., Sheridan, P.H., Heeg, M.J., Rheingold, A.L. and Winter, C.H., Inorg. Chem. 33, p. 5,879 (1994).Google Scholar
17. Winter, C.H., Lewkebandara, T.S., Proscia, J.W. and Rheingold, A.L., Inorg. Chem. 33, p. 1,227 (1994).Google Scholar
18.For leading references, see: Smith, P.M. and Custer, J.S., Appl. Phys. Lett. 70, p. 3,116 (1997).Google Scholar
Reid, J.S., Sun, X., Kolawa, E. and Nicolet, M.-A., IEEE Electron Device Lett. 15, p. 298 (1994).Google Scholar
Reid, J.S., Kolawa, E., Ruiz, R.P. and Nicolet, M.-A., Thin Solid films 236, p. 319 (1993).Google Scholar
Kolawa, E., Chen, J.S., Reid, J.S., Pokela, P.J. and Nicolet, M.-A., J. Appl. Phys. 70, p. 1,369 (1991).Google Scholar
19.For leading references, see: Huang, C.-T. and Duh, J.-G., Surf. Coatings Technol. 71, p. 259 (1995).Google Scholar
Tanaka, Y., Giir, T.M., Kelly, M, Hagstrom, S.B. and Ikeda, T., Thin Solid films 228, p. 238 (1993).Google Scholar
Münz, W.-D., Hurkmans, T., Keiren, G. and Trinh, T., J. Vac. Sci. Technol. A 11, p. 2,583 (1993).Google Scholar
Mclntyre, D., Greene, J.E., Hakansson, G., Sundgren, J.-E. and Münz, W.-D., J. Appl. Phys. 67, p. 1,542 (1990).Google Scholar
Randhawa, H., Johnson, P.D. and Cunningham, R., J. Vac. Sci. Technol. A 6, p. 2,136 (1988).Google Scholar
Hakansson, G., Sundgren, J.-E., Mclntyre, D., Greene, J.E. and Münz, W.D., Thin Solid films 153, p. 55 (1987).Google Scholar
20. Kim, B.-J., Lee, S.-H. and Lee, J.-J., J. Mater. Sci. Lett. 16, p. 1,597 (1997).Google Scholar
Kim, K.H. and Lee, S.H., Thin Solid films 283, p. 165 (1996).Google Scholar
21. Vancoille, E., Celis, J.P. and Roos, J.R., Thin Solid films 224, p. 168 (1993).Google Scholar
Roos, J.R., Celis, J.P., Vancoille, E., Veltrop, H., Doelens, S., Jungblut, F., Ebberink, J. and Homberg, H., Thin Solid films 193/194, p. 547 (1990).Google Scholar
Gissler, W., Surf. Coatings Technol. 68/69, p. 556 (1994).Google Scholar
22. Sproul, W.D., J. Vac. Sci. Technol. A 12, p. 1,595 (1994).Google Scholar
23. Petrov, I., Mojab, E., Adibi, F., Greene, J.E., Hultman, L. and Sundgren, J.-E., J. Vac. Sci. Technol. A ll, 11 (1993).Google Scholar
24. Winter, C.H., Lewkebandara, T.S., Sheridan, P.H. and Proscia, J.W., Mat. Res. Soc. Symp. Proc. 282, p. 293 (1993).Google Scholar
25. Cullity, B.D., Elements of X-Ray Diffraction, Addison-Wesley, New York, 1978, pp. 99106, p. 281.Google Scholar
26.We thank Mr. Ariel Macatangay of our department for measuring these oxidation potentials.Google Scholar
27. Scheper, J.T. and Winter, C.H., unpublished results.Google Scholar
28. Guzei, I.A., Baboul, A.G., Yap, G.P.A., Rheingold, A.L., Schlegel, H.B. and Winter, C.H., J. Am. Chem. Soc. 119, p. 3,387 (1997)Google Scholar
29. Guzei, I.A. and Winter, C.H., unpublished work.Google Scholar
30. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Murlenberg, G.E., Handbook of X-Ray Photoelectron Spectroscopy, Perkin Elmer Corp., Physical Electronics Division: Eden Prairie, Minnesota, 1979, pp 42, 68.Google Scholar