Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T10:35:33.731Z Has data issue: false hasContentIssue false

Pr Doped YBCO Films Produced by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

B. Craig Harrison
Affiliation:
[email protected], Air Force Research Laboratory, Propulsion Directorate, 2645 5th st., bldg. 450, WPAFB, OH, 45433, United States
Joseph W. Kell
Affiliation:
[email protected], Air Force Research Laboratory, 2645 5th st., bldg. 450, WPAFB, OH, 45433, United States
Paul N. Barnes
Affiliation:
[email protected], Air Force Research Laboratory, 2645 5th st., bldg. 450, WPAFB, OH, 45433, United States
Timothy J. Haugan
Affiliation:
[email protected], Air Force Research Laboratory, 2645 5th st., bldg. 450, WPAFB, OH, 45433, United States
Chakrapani V. Varanasi
Affiliation:
[email protected], Air Force Research Laboratory, 2645 5th st., bldg. 450, WPAFB, OH, 45433, United States
Manisha V. Rane
Affiliation:
[email protected], Albany State University, 251 Fuller Road, Albany, NY, 12203, United States
Frank Ramos
Affiliation:
[email protected], Albany State University, 251 Fuller Road, Albany, NY, 12203, United States
Iman Maartense
Affiliation:
[email protected], Air Force Research Laboratory, bldg. 652, WPAFB, OH, 45433, United States
Get access

Abstract

Pr doped YBa2Cu3O7-d targets with composition Y1-xPrxBa2Cu3O7-d where × = 0.0001, 0.001, 0.01, and 0.1 were prepared from oxide powders and were used to deposit thin films by pulsed laser deposition using conditions previously optimized for pure YBa2Cu3O7-d. The Pr dopant was found to be dispersed throughout the film by secondary ion mass spectrometry and found to have an increased density of nanoparticles on the surface. The pinning force of the doped samples was found to decrease with increasing concentration of Pr; however, at 0.01% concentration the doped film displayed a significant enhancement over pure YBa2Cu3O7-d for nearly the full range of 0 – 9 T.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Barnes, P. N., Sumption, M. D. and Rhoads, G. L., Cryogenics 45, 670 (2005).Google Scholar
2 Haugan, T. J, Barnes, P. N., Wheeler, R., Meisenkothen, F. and Sumption, M. D., Nature 430, 867 (2004).Google Scholar
3 Haugan, T. J., Barnes, P.N, I. Maartense, Lee, E. J., Sumption, M. D. and Cobb, C. B., Mater. Res. 18, 2618 (2003).Google Scholar
4 MacManus-Driscoll, J. L. et al. , Nature Materials 3, 439 (2004).Google Scholar
5 Haugan, T. J., Tolliver, J. C., Evans, J. M., Kell, J. W., HTS Thin Film and More on Vortex Studies (Studies of High Temperature Superconductors, edited by Narlikar, A., 49 (Nova Science Publishers, Inc., New York, 2005).Google Scholar
6 MacManus-Driscoll, J.L. et al. , Appl Phys Lett 84, 5329 (2004).Google Scholar
7 Kell, J. W., Haugan, T. J., Locke, M. F., and Barnes, P. N., IEEE Trans. Appl. Supercond. 15, 3726 (2005).Google Scholar
8 Soderholm, L., Zhang, K., Hinks, D.G, Beno, M.A, Jorgensen, J.D, Segre, C.U and Schuller, I.K, Nature (London) 328 604 (1987).Google Scholar
9 Liang, J.K, Xu, X.T, Xie, S.S, Rao, G.H, Shao, X.Y,Dian, Z.G, J. Phys. B 69 137 (1987).Google Scholar
10 Matsuda, A., Kinoshita, K., Ishii, T., Shibata, H., Watanabe, T. and Yamada, T., Phys. Rev. B 38, 2910 (1988).Google Scholar
11 Yoshida, K., Phys. Rev. B 60 9325 (1999).Google Scholar
12 Harada, T. and Yoshida, Y., Physica C 383, 48 (2002).Google Scholar
13 Malezemoff, A. P., Mannhart, J. and Scalapino, D., Physics Today 58, 41 (2005).Google Scholar