Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:47:36.049Z Has data issue: false hasContentIssue false

Power Law Behavior of the Pressure Dependence of Expansivity in the Liquid Hexane as a Model for Liquids. Limit of Thermodynamic Stability

Published online by Cambridge University Press:  21 February 2011

Ph. Pruzan*
Affiliation:
Physique Milieux Très Condensés, T13 E4, Université de Paris VI, 4, Place Jussieu 75230Paris.
Get access

Abstract

In this work a power lay is used to fit the isothermal pressure dependence of the expansivity α = V−1(∂V/∂T)p of liquid hexane. This functional form is also observed to fit the expansivity and the isothermal compressibility KT = −V−1(∂V/∂P)T data of the three liquids : hexane, argon, carbon dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example Bewilogua, L. and Gladun, C., in Liquids, (Taylor and Francis Ltd. London, 1970). p.107.Google Scholar
2. Skripov, V.P., Metastable Liquids, (John Wiley and Sons, New York, 1974).Google Scholar
3. Skripov, V.P., in Water and Steam, Straub, J. and Scheffler, K. eds., Pergamon, New York, 1980).Google Scholar
4. Benedek, G.B., in Polarisation, Matière et Rayonnement, Livre de Jubilé en l'honneur du Professeur Kastler., A. (Presses Universitaires de France, 1969). p.72.Google Scholar
5. Osman, J. and Sorensen, C.M., J.Chem.Phys. 73, 4142 (1980).Google Scholar
6. Sorensen, C.M. and Semon, M.D., Phys.Rev. A21, 340 (1980).CrossRefGoogle Scholar
7. Baidakov, V.G., Skripov, V.P., and Kaverin, A.M., Sov.Phys.JETP, 40, 335 (1975).Google Scholar
8. Hareng, M. and Leblond, J., J.Chem.Phys. 73, 622 (1980).Google Scholar
9. Leblond, J. and Hareng, M., to appear in the Journal de Physique.Google Scholar
10. Speedy, R.J. and Angell, C.A., J.Chem.Phys. 65, 851 (1976).Google Scholar
11. Angell, C.A., Oguni, M., and Sichina, W.J., J.Phys.Chem. 86, 998 (1982) and references therein.Google Scholar
12. Speedy, R.J., J.Phys.Chem. 86, 982 (1982) and references therein.CrossRefGoogle Scholar
13. Boyer, L.L., Phys.Rev. B23, 3673 (1981).Google Scholar
14. Pruzan, Ph., Liebenberg, D.H., and Mills, R.L., Phys.Rev.Lett. 48, 1200 (1982).Google Scholar
15. Minassian, L.Ter and Pruzan, Ph., J.Chem.Thermodynamics, 9, 375 (1977).Google Scholar
16. Minassian, L.Ter, Pruzan, Ph., and Soulard, A., J.Chem.Phys. 75, 3064 (1981).Google Scholar
17. In particular, tests were carried out adding to Eq.(1) a regular part B(p–p)Δ. Fits were not improved using this background correction.Google Scholar
18. Street, W.B., Physica, 76, 59 (1974).Google Scholar
19. Bridgman, P.W., The Physics of High Pressure (Dover, New York, 1970) p.136.Google Scholar
20. Parmar, D.S. and Jaladuddin, A.K., Phys.Lett. 42A, 497 (1973).Google Scholar
21. Compagner, A., Physica, 72, 115 (1974).CrossRefGoogle Scholar
22. Bender, E., in Proceedings of the 5th Symposium on Thermophysical Properties (ASME 1970) p. 227 .Google Scholar
23. EOS of Altunin and Gadetskii in carbon dioxide, International Thermodynamic Tables of the Fluid State. 3, compiled by Angus, S., Armstrong, B., and de Reuk, K.M. (Pergamon, 1976).Google Scholar
24. Kuss, E. and Taslimi, M., Chemie-Ing.Techn. 42, 1073 (1970).Google Scholar
24a Eduljee, H.E., Newitt, D.M., and Weale, K.E., J.Chem. Soc. 4, 3086 (1951).CrossRefGoogle Scholar