Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:19:25.275Z Has data issue: false hasContentIssue false

Power and Radio Frequency Inductors Using a Hybrid Ferrite-Flex Foil Technology

Published online by Cambridge University Press:  26 February 2011

Martin Gijs
Affiliation:
[email protected], Ecole Polytechnique Fédérale de Lausanne, Institute of Microelectronics and Microsystems, BM 3.128, Station 17, Lausanne, 1015, Switzerland
Menouer Saidani
Affiliation:
[email protected], Ecole Polytechnique Fédérale de Lausanne, Institute of Microelectronics and Microsystems, Station 17, Lausanne, 1015, Switzerland
Get access

Abstract

We present a hybrid technology for the realization of three-dimensional miniaturized power inductors and RF inductors on silicon. The power inductors consist of planar Cu coils on polyimide substrates, and mm-size ferrite magnetic cores, obtained by three-dimensional micro-patterning of ferrite wafers using powder blasting. The coils are realized using an in-house developed high-resolution polyimide spinning and Cu electroplating process. Winding widths down to 5 μm have been obtained and total device volumes are ranging between 1.5 and 10 mm3. Inductive and resistive properties are characterized as a function of frequency; inductance values in the 100 μH range have been obtained. We also have realized millimetre-size RF inductors on silicon using the same polyimide mould - Cu electroplating coil technology. Subsequently the coils are assembled with magnetic cover plates of commercially available bulk Ni-Zn ferrites of high resistivity. Using the magnetic flux-amplifying ferrite plates, we obtain a 40 % enhancement of the inductance and a 25 % enhancement of the quality factor (Q=10-20) for frequencies up to 0.2 GHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Soohoo, R. F., IEEE Transactions on Magnetics 15 (6), 18031805 (1979).Google Scholar
2. Kawabe, K., Koyama, H. and Shirae, K., IEEE Transactions on Magnetics 20 (5), 18041806 (1984).Google Scholar
3. Oshiro, O., Tsujimoto, H. and Shirae, K., IEEE Transactions on Magnetics 23 (5), 37593761 (1987).Google Scholar
4. Korenivski, V., Journal of Magnetism and Magnetic Materials 215, 800806 (2000).Google Scholar
5. Park, J. Y. and Allen, M. G., A comparison of micromachined inductors with different magnetic core materials, in: IEEE Electronic Components and Technology Conference, pp. 375381 (1996).Google Scholar
6. Lochel, B. and Maciossek, A., Journal of the Electrochemical Society 143 (10), 33433348 (1996).Google Scholar
7. Lochel, B., Maciossek, A., Quenzer, H. J. and Wagner, B., Journal of the Electrochemical Society 143 (1), 237244 (1996).Google Scholar
8. Lochel, B., Maciossek, A., Rothe, M. and Windbracke, W., Sensors and Actuators a-Physical 54 (1–3), 663668 (1996).Google Scholar
9. Maciossek, A., Lochel, B., Quenzer, H. J., Wagner, B., Schulze, S. and Noetzel, J., Microelectronic Engineering 27 (1–4), 503508 (1995).Google Scholar
10. Mino, M., Yachi, T., Tago, A., Yanagisawa, K. and Sakakibara, K., IEEE Transactions on Magnetics 32 (2), 291296 (1996).Google Scholar
11. Mino, M., Yachi, T., Tago, A., Yanagisawa, K. and Sakakibara, K., IEEE Transactions on Magnetics 28 (4), 19691973 (1992).Google Scholar
12. Yamasawa, K., Maruyama, K., Hirohama, I. and Biringer, P. P., IEEE Transactions on Magnetics 26 (3), 12041209 (1990).Google Scholar
13. Ben-Yaakov, S., The benefits of Planar Magnetics in HF Power Conversion, (Payton, Rishon- Le Zion, Israel).Google Scholar
14. Vanderlinde, D., Boon, C. A. M. and Klaassens, J. B., IEEE Transactions on Industrial Electronics 38 (2), 135141 (1991).Google Scholar
15. Amalou, F., Bornand, E. L. and Gijs, M. A. M., IEEE Transactions on Magnetics 37 (4), 29993003 (2001).Google Scholar
16. Belloy, E., Thurre, S., Walckiers, E., Sayah, A. and Gijs, M. A. M., Sensors and Actuators a-Physical 84 (3), 330337 (2000).Google Scholar
17. Saidani, M. and Gijs, M. A. M., Journal of Microelectromechanical Systems 12 (2), 172178 (2003).Google Scholar
18. Burghartz, J. N., Edelstein, D. C., Soyuer, M., Ainspan, H. A. and Jenkins, K. A., IEEE Journal of Solid-State Circuits 33 (12), 20282034 (1998).Google Scholar
19. Taub, S. R. and Alterovitz, S. A., Microwaves & Rf 33 (10), 60–& (1994).Google Scholar
20. Larson, L. E., IEEE Journal of Solid-State Circuits 33 (3), 387399 (1998).Google Scholar
21. Yamaguchi, M., Suezawa, K., Takahashi, Y., Arai, K. I., Kikuchi, S., Shimada, Y., Tanabe, S. and Ito, K., Journal of Magnetism and Magnetic Materials 215, 807810 (2000).Google Scholar
22. Yamaguchi, M., Baba, M. and Arai, K. I., IEEE Transactions on Microwave Theory and Techniques 49 (12), 23312335 (2001).Google Scholar
23. Yamaguchi, M., Baba, M., Suezawa, K., Moizumi, T., Arai, K. I., Haga, A., Shimada, Y., Tanabe, S. and Itoh, K., IEEE Transactions on Magnetics 36 (5), 34953498 (2000).Google Scholar
24. Yamaguchi, M., Okuyama, H. and Arai, K. I., IEEE Transactions on Magnetics 31 (6), 42294231 (1995).Google Scholar
25. Yamaguchi, M., Suezawa, K., Arai, K. I., Takahashi, Y., Kikuchi, S., Shimada, Y., Li, W. D., Tanabe, S. and Ito, K., Journal of Applied Physics 85 (11), 79197922 (1999).Google Scholar
26. Suzuki, Y., vanDover, R. B., Gyorgy, E. M., Phillips, J. M., Korenivski, V., Werder, D. J., Chen, C. H., Felder, R. J., Cava, R. J., Krajewski, J. J. and Peck, W. F., Journal of Applied Physics 79 (8), 59235925 (1996).Google Scholar
27. Saidani, M. and Gijs, M. A. M., Applied Physics Letters 84 (22), 44964498 (2004).Google Scholar
28. Soft Ferrite and Accesories Catalogue, (http://www.ferroxcube.com, 2002).Google Scholar