Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:43:05.386Z Has data issue: false hasContentIssue false

Powder processing of ductile materials for high pressure studies: application to intermetallic alloys

Published online by Cambridge University Press:  10 February 2011

J. W. Otto
Affiliation:
Dept. Physics, Villanova Univ., Villanova, PA 19085, [email protected]
G. Frommeyer
Affiliation:
Max-Planck-Institut für Eisenforschung, 40237 Düsseldorf, Germany
J. K. Vassiliou
Affiliation:
Dept. Physics, Villanova Univ., Villanova, PA 19085, [email protected]
Get access

Abstract

Ductile materials are difficult to powderize for use in high pressure work. The potential of different techniques (gas-atomization, mechanical alloying, ball milling and subsequent annealing) for preparing suitable powders of some aluminides is investigated. Compression of Ti46Al54 and NiAl prepared by these methods yields equation of state parameters in good agreement with determinations by other methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Otto, J.W., Vassiliou, J.K. and Frommeyer, G., J. Synchrotron Rad. 4, 155 (1997); J. High Pressure Research (in press); Phys. Rev. B 57, 3253 (1998);Google Scholar
Otto, J.W., Vassiliou, J.K. and Frommeyer, G., J. Synchrotron Rad. 4, 155 (1997), p. 3264.Google Scholar
[2] Mehrabian, R., Rapid Solidification Processing (Claitor's Publishing Division, Baton Rouge, 1978).Google Scholar
[3] Benjamin, J.S., Met. Trans. A 10, 2943 (1970).Google Scholar
[4] Koch, C.C., in Materials Science and Technology-Processing of Metals and Alloys, Vol. 15, edited by Cahn, R.W. (VCH Weinheim, Germany, 1991), pp. 193245.Google Scholar
[5] Westbrook, J.H. and Fleisher, R.L., Intermetallic alloys, John Wiley & Sons, New York, 1994.Google Scholar
[6] Rommerskirchen, M., Ph.D. Thesis, RWTH Aachen (1997).Google Scholar
[7] Oehring, M., Appel, F., Pfullmann, Th. and Borrmann, R., Appl. Phys. Lett. 66, 941 (1995)Google Scholar
[8] Lutterotti, L., Gialanella, S. and Caudron, R., Materials Science Forum 288, 551 (1996).Google Scholar
[9] Gialanella, S., Delorenzo, R., Marino, F. and Guella, M., Intermetallics 3, 1 (1994);Google Scholar
Kuschke, W.-M., Keller, R.-M., Grahle, P., Mason, R. and Arzt, E., Z. Metallkde. 86, 804 (1995);Google Scholar
Zhou, G.F., Zwanenburg, M.J. and Bakker, H., J. Appl. Phys. 78, 3438 (1995).Google Scholar
[10] Otto, J.W., Nucl. Instrum. Methods A 384, 552 (1997); J. Appl. Cryst. (Dec. 1997).Google Scholar
[11] Peun, T., Lauterjung, J. and Hinze, E., Nucl. Instrum. Methods A 97, 483 (1995).Google Scholar
[12] Weidner, D.J., Wang, Y. and Vaughan, M.T., Geophys. Res. Lett. 9, 753 (1994).Google Scholar
[13] Wunderlich, W., Kremser, Th. and Frommeyer, G., Z. Metallkde. 81, 802 (1990).Google Scholar
[14] Asta, M., de Fontaine, D., van Schilfgaarde, M., Sluiter, M. and Methfessel, M., Phys. Rev. B 46, 5055 (1992); and references therein.Google Scholar
[15] Otto, J.W., Vassiliou, J.K. and Frommeyer, G., J. Mater. Research 12, 3106 (1997).Google Scholar
[16] Wasilewski, R.J., Trans. TMS AIME 236, 455 (1966).Google Scholar
[17] McMahon, M.I. and Nelmes, R.J., Phys. Rev. Lett. 78, 3884 (1997).Google Scholar