Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:18:28.377Z Has data issue: false hasContentIssue false

Powder Metallurgy Processing of Intermetallic Matrix Composites

Published online by Cambridge University Press:  15 February 2011

Randall M. German
Affiliation:
P/M Lab, 118 Research West, Engineering Science and Mechanics DepartmentThe Pennsylvania State University, University Park, PA 16802–6809
Ronald G. Iacocca
Affiliation:
P/M Lab, 118 Research West, Engineering Science and Mechanics DepartmentThe Pennsylvania State University, University Park, PA 16802–6809
Get access

Abstract

Intermetallic compounds are similar to ceramics because they are stoichiometric, with limited compositional ranges and brittle behavior. The limited ductility forces a reliance on powder techniques for shaping and consolidation. The high temperature character of intermetallics is beneficial to high temperature service, but this same attribute contributes to difficulty in processing. This paper reviews the several powder approaches to forming intermetallic structures. Examples are given on powders, consolidation options, and properties. Densification maps are introduced for estimation of consolidation cycles. Unfortunately, many of the composites exhibit little strengthening benefit from incorporation of reinforcing phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schulson, E. M., 1987. Inter. J. Powder Met. 23:2532.Google Scholar
2. Stoloff, N. S., 1985. High-Temperature Ordered Intermetallic Alloys, ed. Koch, C. C., Liu, C. T., and Stoloff, N. S., 39(1):327. Pittsburgh: MRS.Google Scholar
3. Vedula, K., and Stephens, J. R.. 1987. Prog. Powder Met. 43:561573.Google Scholar
4. Oddone, R. R., and German, R. M.. 1989. Advances in Powder Met. 3:475489.Google Scholar
5. Martirosyan, N. A., Dolukhanyan, S. K., Mkrtchyan, G. M., Borovinskaya, I. P., and Merzhanov, A. G.. 1976. Soviet Powder Met. Metal Ceramic 15:522525.Google Scholar
6. German, R. M., 1994. Powder Metallurgy Science. second ed., Princeton: MPIF.Google Scholar
7. Withers, J. C., Shiao, H- C., Loutfy, R. O., and Wang, P.. 1991. J. Metals 43 (Aug):3639.Google Scholar
8. Abe, O., and Tsuge, A.. 1991. J. Mater. Res. 6: 928934.Google Scholar
9. Suryanarayana, C., Sundaresan, R., and Froes, F. H.. 1990. Solid State Powder Processing, ed. Clauer, A. and DeBarbadillo, J. J., pp. 5564. Warrendale: TMS.Google Scholar
10. Majima, K., Niimi, N., Katsuyama, S., Tomizawa, J., and Nagai, H.. 1992. J. Japan Soc, Powder Powder Met, 39:197202.Google Scholar
11. Vedula, K., Michal, G. M., and Figueredo, A. M.. 1988. Modern Developments in Powder Met. 20:491502. Princeton: MPIF.Google Scholar
12. Wang, J. S. C., et al. . 1988. Inter. J. Powder Met, 24:315325.Google Scholar
13. Benn, R. C., Mirchandani, P. K., and Watwe, A. S.. 1988. Modern Developments in Powder Met. 21:479493. Princeton: MPIF.Google Scholar
14. McKamey, C. G., et al. . 1991. J. Mater. Res, 6(8):17791805.Google Scholar
15. Sikka, V. K., Baldwin, R. H., and Howell, C. R.. 1991. Adv. Powder Met, 6:147158.Google Scholar
16. Sikka, V. K., Ohriner, E. K., and Allard, L. F.. 1991. P/M in Aerospace and Defense Technologies Symposium Proceedings, pp.137145. Princeton: MPIF.Google Scholar
17. Maurer, R., et al. . 1989. High-Temperature Ordered Intermetallic Alloys III 133:421426. Pittsburgh: MRS.Google Scholar
18. German, R. M., Bose, A. and Camus, G.. 1994. Inter. J. Powder Met., 30:in press.Google Scholar
19. Laag, R., et al. . 1989. Science Sintering, ed. Uskokovic, D. P., pp. 295309. New York: Plenum Press.Google Scholar
20. Rigney, J. D., et al. . 1988. High-Temperature Ordered Intermetallic Alloys III 133:603608. Pittsburgh: MRS.Google Scholar
21. Murray, J. C., et al. . 1990. Adv. Powder Met. 2:233242.Google Scholar
22. Huang, S. C., and Ritter, A. M.. 1989. J. Mater. Res. 4:288293.Google Scholar
23. Fuchs, G. E., and Kao, W. H.. 1988. Modern Developments Powder Met., 20:531557. Princeton: MPIF.Google Scholar
24. Shiga, S., et al. . 1991. J. Japan Soc. Powder Powder Met. 38:971975.Google Scholar
25. Persad, C., et al. . 1988. High-Temperature Ordered Intermetallic Alloys III 133:717722. Pittsburgh: MRS.Google Scholar
26. Shih, D. S., Scarr, G. K., and Chesnutt, J. C.. 1988. High-Temperature Ordered Intermetallic Alloys III 133:167172. Pittsburgh: MRS.Google Scholar
27. Porter, W. J., et al. . 1990. Adv. Powder Met. 2:243257.Google Scholar
28. Kaysser, W. A., et al. . 1991. Inter. J. Powder Met. 27(1):4349.Google Scholar
29. Wright, R. N., Williamson, R. L., and Knibloe, J. R.. 1990. Powder Met. 33:253259.Google Scholar
30. Wright, R. N., Rabin, B. H., and Knibloe, J. R.. 1989. Mater. Manuf. Proc. 4(1):2537.Google Scholar
31. Apgar, L. S., and Eylon, D.. 1991. ISIJ Inter, 31(8): 915921.Google Scholar
32. Tokizane, M., Ameyama, K., and Sugimoto, H.. 1990. Solid State Powder Processing, ed. Clauer, A. and DeBarbadillo, J. J., pp. 6775. Warrendale: TMS.Google Scholar
33. Tokizane, M., Isonishi, K., and Kido, S.. 1990. PM90, World Conference on Powder Met. 2:93–96. London: The Institute Metals.Google Scholar
34. Yolton, C. F., et al. . 1986. Prog. Powder Met. 42:479487.Google Scholar
35. Graves, J. A., et al. . 1987. Scripta Met. 21:567572.Google Scholar
36. Schaefer, R. J., 1992. Inter, J, Powder Met. 28:161173.Google Scholar
37. Osborne, N. R., Porter, W. J. and Eylon, D.. 1991. SAMPE Quarterly 22(4):2128.Google Scholar
38. Kohmoto, H., and Fraser, H. L.. 1989. Adv. Powder Met. 3:203211.Google Scholar
39. Hsiung, L. M., Kuntz, T. A., and Wadley, H. N. G.. 1991. Low Density. High Temperature Powder Met. Alloys, ed. Frazier, W. E., et al. , pp. 2134. Warrendale: TMS.Google Scholar
40. Baker, I. et al. 1984. Metallography 17: 299314.Google Scholar
41. Ray, R., 1990. Met. Powder Rpt. 45(1):5659.Google Scholar
42. Cheney, R. F., and Seydel, E. R.. 1990. Met. Powder Rpt. 45(1):4346.Google Scholar
43. Shaw, K. G., Misiolek, W. Z., and German, R. M.. 1991. Adv. Powder Met. 6:159166.Google Scholar
44. Shaw, K. G., and German, R. M.. 1991. Adv. Powder Met. 5:263275.Google Scholar
45. Diehl, W., and Stover, D.. 1990. Met. Powder Rpt, 45(5):333338.Google Scholar
46. German, R. M., 1985. Liquid Phase Sintering. New York: Plenum Press.Google Scholar
47. Munir, Z. A., 1992. Metall. Trans, 23A:713.Google Scholar
48. German, R. M. et al. 1990. PM '90 Inter. Conference on Powder Met. 1:310–323. London: The Institute Metals.Google Scholar
49. German, R. M., 1990. Adv. Powder Met. 2:115132.Google Scholar
50. Sims, D. M., Bose, A., and German, R. M.. 1987. Prog. Powder Met. 43:575596.Google Scholar
51. Bose, A., et al. . 1988. J. Metals 40(9): 1417.Google Scholar
52. Rabin, B. H., Bose, A., and German, R. M.. 1988. Modern Developments Powder Met, 21:511529. Princeton: MPIF.Google Scholar
53. Bose, A., Rabin, B. H., and German, R. M.. 1988. Powder Met. Inter. 20(3) 2530.Google Scholar
54. German, R. M., and Bose, A.. 1989. Mater, Sci. Eng., A107:107116.Google Scholar
55. German, R. M., 1987. Science Sintering, pp. 439451. New York: Plenum Press.Google Scholar
56. Lebrat, J. P., Varma, A., and Miller, A. E.. 1992. Metall, Trans. 23A:6976.Google Scholar
57. Wrzesinski, W. R., and Rawers, J. C.. 1990. J. Mater. Science Let. 9(4):432435.Google Scholar
58. Maeland, A. J., and Narasimhan, D.. 1989. MRS Symp. Proc. 133:723727.Google Scholar
59. Arkens, O. et al. . 1989. MRS Symp. Proc, 133: 493498.Google Scholar
60. Misiolek, W. Z., and German, R. M.. 1991. Adv. Powder Met. 6:167175.Google Scholar
61. Misiolek, W. Z., and German, R. M.. 1991. Mater. Sci. Eng. A144:110.Google Scholar
62. Anton, D. L.. 1988. High Temperature/High Performance Composites 120, pp. 5764. Pittsburgh: MRS.Google Scholar
63. Bhattacharya, A. K.. 1992. J. Amer. Ceramic Soc. 75: 16781681.Google Scholar
64. Hwang, K. S., and Lu, Y. C.. 1990. Adv. Powder Met, 2:133144.Google Scholar
65. Bose, A., et al. . 1991. Adv. Powder Met. 6: 131145.Google Scholar
66. Murray, J. C., and German, R. M.. 1992. Metall. Trans. 23A:23572364.Google Scholar
67. Krueger, B. R., Mutz, A. H., and Vreeland, T.. 1992. Metall. Trans, 23A:5558.Google Scholar
68. Wright, R. N., and Rabin, B. H.. 1992. Adv. Powder Met. 9:283294.Google Scholar
69. Arzt, E., Ashby, M. F., and Easterling, K. E.. 1983. Metall. Trans. 14A: 211221.Google Scholar
70. Coble, R. L.. 1978. Powder Met. Inter, 10:128130.Google Scholar
71. Notis, M. R., Smoak, R. H., and Krishnamachari, V.. 1975. Sintering and Catalysis, ed. Kuczynski, G.C., pp. 493507. New York: Plenum Press.Google Scholar
72. Schaefer, R. J., and Linzer, M., eds. 1991. Hot Isostatic Pressing: Theory and Applications, Mater. Park: ASM Inter..Google Scholar
72. Sikka, V. K., 1988. Modern Developments Powder Met. 20:543557. Princeton: MPIF.Google Scholar
74. Levi, C. G., et al. . 1988. J. Mater, Shaping Tech. 6:125132.Google Scholar
75. Roberts, P. R., and Ferguson, B. L.. 1991. Inter. Mater. Reviews 36(2):6279.Google Scholar
76. Adams, M. L., et al. . 1989. Adv. Powder Met. 3: 439448.Google Scholar
77. Wright, R. N., and Knibloe, J. R.. 1990. Acta Met. Mater, 38:19932001.Google Scholar
78. Bowman, R. R., et al. . 1992. Metall. Trans. 23A: 14931508.Google Scholar
79. Moll, J. H., Yolton, C. F., and McTiernan, B. J.. 1990. Inter. J. Powder Met. 26(2):149155.Google Scholar
80. Dahms, M., 1990. Solid State Powder Processing, ed. Clauer, A. and DeBarbadillo, J. J., pp. 7782. Warrendale: TMS.Google Scholar
81. Myers, M. A., Gupta, B. B., and Murr, L. E.. 1981. J. Metals 33(10):2126.Google Scholar
82. Prummer, R., 1983. Explosive Welding. Forming and Compaction, ed. Blazynski, T.Z., pp. 369395. New York: Applied Science.Google Scholar
83. Wright, R. N., Korth, G. E., and Flinn, J. E.. 1987. Adv. Mater. Proc. 137(4):5659.Google Scholar
84. Ferreira, A., et al. . 1991. Metall. Trans. 22A:685695.Google Scholar
85. Balankin, S. A., Sokolov, V. S., and Troitzikiy, A. O.. 1990. Proceedings PM 90: Inter. Conference on Powder Met, 3, pp. 37–39. London: The Institute Metals.Google Scholar
86. Thadhani, N. N., et al. . 1990. Solid State Powder Processing, ed. Clauer, A. and DeBarbadillo, J. J., pp. 97109. Warrendale: TMS.Google Scholar
87. Annavarapu, S., Apelian, D., and Lawley, A.. 1990. Metall. Trans. 21A: 32373256.Google Scholar
88. Singer, A. R. E., 1985. Inter. J. Powder Met. Powder Tech, 21(3):219234.Google Scholar
88. Gutierrex-Miravete, E., et al. 1989. Metall. Trans. 20A:7185.Google Scholar
90. Apelian, D. et al. 1983. Inter. Metals Review 28: 271294.Google Scholar
91. Herman, H.. 1988. MRS Bull, 13(Dec):60–67.Google Scholar
92. Taub, A. I., Huang, S. C., and Chang, K. M.. 1984. High-Temperature Ordered Intermetallic Alloys 39:221228. Pittsburgh: MRS.Google Scholar
93. Chang, K. M., Taub, A. J., and Huang, S. C.. 1984. High-Temperature Ordered Intermetallic Alloys 39:335–42. Pittsburgh: MRS.Google Scholar
94. Bose, A., and German, R. M.. 1988. Modern Developments Powder Met. 18:299314. Princeton: MPIF.Google Scholar
95. Moore, B., et al. . 1988. High Temperature/High Performance Composites 120:5156. Pittsburgh: MRS.Google Scholar
96. Bose, A., and German, R. M.. 1988. Adv. Mater. Manuf. Proc, 3: 3756.Google Scholar
97. Alman, D. E., and Stoloff, N. S.. 1991. Low Density. High Temperature Powder Met. Alloys (ed. Frazier, W. E., Koczak, M. J., and Lee, P. W.), pp. 109125. Warrendale: TMS.Google Scholar
98. Alman, D. E., and Stoloff, N. S.. 1991. Inter. J. Powder Met. 27: 2941.Google Scholar
99. Alman, D. E. et al. 1989. Processing Ceramic and Metal Matrix Composites, 217227. New York: Pergamon Press.Google Scholar
100. Tiwari, R.. 1990. unpublished.Google Scholar
101. Bose, A., and German, R. M.. 1988. Indust. Heat. 55(5): 3841.Google Scholar
102. Schneibel, J. H., et al. . 1991. J. Mater. Res, 6(8):16731679.Google Scholar
103. Larsen, J. M., et al. 1990. High Temperature Aluminides and Intermetallics pp. 521556. Warrendale: TMS.Google Scholar
104. Nardone, V. C., and Strife, J. R.. 1991. Metall. Trans. 22A:183189.Google Scholar
105. Doychak, J., 1992. J. Metals 44(Jun)4651.Google Scholar
106. McKamey, C. G., et al. . 1988. High-Temperature Ordered Intermetallic Alloys III 133:609614. Pittsburgh: Mater. Res. Soc..Google Scholar
107. German, R. M., Bose, A., and Stoloff, N. S. 1988. High-Temperature Ordered Intermetallic Alloys III 133:403414. Pittsburgh: Mater. Res. Soc..Google Scholar
108. Misiolek, W. Z., and German, R. M.. 1990. Adv. Powder Met. 2:161172.Google Scholar
109. Wang, L., and Arsenault, R. J.. 1991. Metall. Trans, 22A:30133018.Google Scholar
110. Whittenberger, J. D., et al. . 1989. J. Mater. Res. 4(5):11641171.Google Scholar
111. Stoloff, N. S., and Alman, D. E.. 1990. MRS Bull. 15(12):4753.Google Scholar
112. Kumar, K. S., Mannan, S. K., and Viswandham, R. K.. 1992. Acta Met. Mater. 40:12011222.Google Scholar
113. Kumar, K. S., et al. . 1991. NASA Technical Memorandum #NASA TM-103724, Lewis Res. Center, Cleveland.Google Scholar
114. Brindley, P. K.. 1986. High-Temperature Ordered Alloys II 81:419424. Pittsburgh: MRS.Google Scholar
115. Christodoulou, L., Parrish, P. A., and Crowe, C. R.. 1988. High Temperature/High Performance Composites 120:2934. Pittsburgh: MRS.Google Scholar
116. Kimura, H., and Kobayashi, S.. 1992. J. Japan Soc. Powder Powder Met. 39:287290.Google Scholar
117. Yang, J. M., and Jeng, S. M.. 1992. J. Metals 44(Jun):5257.Google Scholar
118. Sheppard, L. M., 1990. Ceramic Bull. 69:666673.Google Scholar
119. Larkin, D. J., Interrante, L. V., and Bose, A.. 1990. J. Mater. Res. 5(11):27062717.Google Scholar
120. Chou, T. C., and Nieh, T. G.. 1990. J. Mater. Res. 5(9):19851994.Google Scholar
121. Yang, J. M., Kao, W. H., and Liu, C. T.. 1988. High-Temperature Ordered Intermetallic Alloys III 133:453458. Pittsburgh: MRS.Google Scholar
122. Kim, Y. W., and Froes, F. H.. 1989. Adv. Powder Met. 3:251267.Google Scholar
123. Fuchs, G. E., 1989. High-Temperature Ordered Intermetallic Alloys III 133:615620. Pittsburgh: MRS.Google Scholar
124. Vedula, K., and Stephens, J. R.. 1987. Met. Powder Rpt., 42(Feb):8489.Google Scholar
125. Beddoes, J. C., Wallace, W. and de Malherbe, M. C.. 1992. Inter. J. Powder Met. 28: 313325.Google Scholar
126. Feest, E. A., and Tweed, J. H.. 1992. Mater. Sci. Tech. 8:308316.Google Scholar
127. Erich, D. L., 1987. Inter, J. Powder Met. 23(1):4554.Google Scholar
128. Moxson, V. S., and Friedman, G. I.. 1986. Prog. Powder Met. 42:489500.Google Scholar
129. Strothers, S., and Vedula, K.. 1987. Prog. Powder Met. 43:597610.Google Scholar
130. Bose, A., et al. . 1993. J. Mater. Res, 8:430437.Google Scholar