Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T01:24:26.899Z Has data issue: false hasContentIssue false

The Potential Effect of Multilayer Patterns on Temperature Uniformity During Rapid Thermal Processing

Published online by Cambridge University Press:  15 February 2011

Jeffrey P. Hebb
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,MA 02139
Klavs F. Jensen
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Erik W. Egan
Affiliation:
Semiconductor Products Sector, Advanced Custom Technologies, Motorola, Inc., Mesa, AZ 85202
Get access

Abstract

This work aims to systematically gain an understanding of the effects of multilayer patterns on wafer temperature uniformity during rapid thermal processing, and explore possible solutions to the problem. Steady state and transient wafer temperature distributions are simulated by combining a detailed reactor transport model with multilayer electromagnetic theory to predict wafer radiative properties. A generic axisymmetric RTP system with single-side illumination is used as a testbed to explore pattern effects for a simulated source/drain implant anneal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robertson, F. ad Lindholm, D., 2nd International Rapid Thermal Processing Conference, August 31-September 2, Monterey, CA, 7 (1994).Google Scholar
2. Feil, B., Drew, M., and Moench, J., 1st International Rapid Thermal Processing Conference, September 8-10, Scotsdale, AZ, 114 (1993).Google Scholar
3. Buller, J.F., Farahani, M., and Garg, S., 2nd International Rapid Thermal Processing Conference, August 31-September 2, Monterey, CA, 52 (1994).Google Scholar
4. Vandenabeele, P., Maex, K., and De Keersmaecker, R., Mater. Res. Soc. Proc. 146, pp. 149160 (1989).Google Scholar
5. Kolpakov, A.V., Makhviladze, T.M., Panjukhin, A.V., Volchek, O.S., Erofeev, A.F., Orlowski, M., International Electron Devices Meeting, San Fransisco, CA, December 11-14, pp. 541544 (1994).Google Scholar
6. Thakur, R.P.S. and Renken, W., 2nd International Rapid Thermal Processing Conference, August 31-September 2, Monterey, CA, 333336 (1994).Google Scholar
7. Nenyei, Z., Tillmann, A., and Gelpey, J., 2nd International Rapid Thermal Processing Conference, August 31-September 2, Monterey, CA, 110114 (1994).Google Scholar
8. Merchant, T.P., Lie, K.H., Cole, J.V., Jensen, K.F., First International Rapid Thermal Processing Conference, Scottsdale, Arizona, September 8-10, pp. 376385.(1993)Google Scholar
9. Yeh, P., 1988, Optical Waves in Layered Media, (Wiley, New York, 1988), Chapter 5.Google Scholar
10. Palik, E.D., Handbook of Optical Constants of Solids, (Academic Press, New York, 1985).Google Scholar
11. Borghesi, A., Piaggi, A., Guizzetti, G., Levy, F., Tanaka, M., Fukutani, H., Phys. Rev. B, 40,, pp. 16111615 (1989).Google Scholar
12. Sato, T., Jap. J.. Appl. Phys., 6, pp. 339347 (1967).Google Scholar
13. Moslehi, M.M., Davis, C.J., Paranjpe, A., Velo, L.A., Najm, H.N., Schaper, C., Breedijk, T., Lee, Y.J., and Anderson, D., Solid State Technology, January, 1994, pp. 3545.Google Scholar