Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-10-02T13:13:50.025Z Has data issue: false hasContentIssue false

Post Epitaxial Disordering of CuPtB Ordered AIGaInP/GaInP for Microstructuring

Published online by Cambridge University Press:  10 February 2011

M. Bukard
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart;+49-711-685-4533, +49-711-685-5097,[email protected]
A. Englert
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart;+49-711-685-4533, +49-711-685-5097,[email protected]
C. Geng
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart;+49-711-685-4533, +49-711-685-5097,[email protected]
F. Scholz
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart;+49-711-685-4533, +49-711-685-5097,[email protected]
H. Schweizer
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart;+49-711-685-4533, +49-711-685-5097,[email protected]
Get access

Abstract

Lateral order/disorder structures have been fabricated out of ordered GaInP quantum wells by ion implantation.

Using high resolution electron beam lithography for definition of implantation masks, we achieve wire structures down to 35nm width. Implantation was carried out at energies down to 25keV and doses from 3e10cm−2 to 6e13cm−2. The so created vacancies lead to a reduction of the disordering temperature threshold of about 850°C for mere thermal disordering. Annealing those structures at 800°C results in selective disordering in the unmasked regions. We have ordered wire structures within disordered barriers. Even for the smallest mask widths of 35nm, the PL emission of wires and barriers are well resolved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I. and Yuasa, T., Appl. Phys. Lett. 50, p. 673 (1987).Google Scholar
[2] Ernst, P., Geng, C., Scholz, F., Schweizer, H.; Appl. Phys. Lett. 67, p. 2347 (1995).Google Scholar
[3] Geng, C., Moser, M., Winterhoff, R., Lux, E., Hommel, J., Höhing, B., Schweizer, H., Scholz, F.;J. Cryst. Growth 145, p. 740 (1994).Google Scholar
[4] Wei, S.-H., Zunger, A.; Phys. Rev. B 39, p. 3279 (1989).Google Scholar
[5] Maeder, K.A., Zunger, A.; Phys. Rev. B 51, p. 10462 (1995).Google Scholar
[6] Ueno, Y., Fuji, H., Kobayashi, K., Endo, K., Gomyo, A., Hara, K., Kawata, S., Yuasa, T., Suzuki, T.; Japan. Journ. of Appl. Phys. 29 (1990) L1666.Google Scholar
[7] Hommel, J., Höhing, B., Geng, C., Kessler, M., Haase, D., Scholz, F., Schweizer, H.; Int. Conf. on Micro- and Nano Engineering (1994) Davos (Switzerland); Microelectronic EngineeringGoogle Scholar
[8] Ernst, P., Geng, C., Hahn, G., Phillipp, F., Scholz, F., Schweizer, H.; J. Appl. Phys., acceptedGoogle Scholar
[9] DeLong, M.C., Taylor, P.C., Olson, J.M.; Appl. Phys. Lett. 57, p. 620 (1990).Google Scholar
[10] Ernst, P., Geng, C., Scholz, F., Schweizer, H.; Phys. Stat. Sol. (b) 14, Vol.193 No. 1 (1996).Google Scholar
[11] Ziegler, J.F., Biersack, J.P., Littmark, U.; The Stopping and Range of Ions in Solids, Vol.4, Pergamon Press (1985).Google Scholar