Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:16:24.824Z Has data issue: false hasContentIssue false

Possible shallowing of nitrogen donors in diamond

Published online by Cambridge University Press:  01 February 2011

Takehide Miyazaki
Affiliation:
Advanced Semiconductor Research Center, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukba Central 4, Higashi 1-1-1, Tsukuba 305-8568, japan
Tsuyoshi Uda
Affiliation:
Joint Research Centeral for Atom Technology, Ångstrom Technology Partership, AISTT Tskuba Central 4, Higashi 1-1-1, Tsukuba 305-8568, Japan
Get access

Abstract

Among many doping issues of diamond semiconductors, establishment of a shallow n-type impurity is a very important and yet challenging subject. Although both nitrogen (N) and hydrogen (H) are omnipresent impurities in diamond, they create only deep half-filled states in the energy gap. In this study, we present a theoretical proposal of a mechanism that makes N donors in diamond as shallow as possible. A complex of two adjacent substitutional N atoms with H sitting between the N atoms, an N-H-N defect, has a donor level approximately 1 eV shallower than of an isolated substitutional N defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Porter, L. M. and Davis, R. F., Mater. Sci. Eng. B 34 83 (1995). Table 2.Google Scholar
2. Watanable, H. and Okushi, H., Jpn. J. Appl. Phys. 39, L835 (2000).Google Scholar
3. Koizumi, S. et al., Science 292, 1899 (2001).Google Scholar
4. Koizumi, S. Phys. Stat. Sol. (a) 172, 71 (1999).Google Scholar
5. Yamanaka, S. et al., Jpn. J. Appl. 37, L1129 (1998).Google Scholar
6. Koizumi, S., Teraji, T. and Kanda, H., Diamond Relat. Mater. 9, 935 (2000).Google Scholar
7.We assume P and B chemical potentials to be equal to the total energies of the respective bulk crystals.Google Scholar
8. Laks, D. B. et al., Phys. Rev. Lett. 66, 648 (1991).Google Scholar
9. Aradi, B. et al., Phys. Lett. B 63, 245202 (2001).Google Scholar
10. Larkin, D. J. et al., Appl. Phys. Lett. 65, 1659 (1994).Google Scholar
11. Kalish, R., Diamond Relat. Mater. 10, 1769 (2000).Google Scholar
12. Farrer, R. G., Solid State Commum. 7, 685 (1969).Google Scholar
13. Li, B. B. et al., Appl. Phys. Lett. 73, 812 (1998).Google Scholar
14. Davies, G., J. Phys. C:Solid State Phys. 9, 812 (1976).Google Scholar
15. Chrenko, R. M. et al., Nature 270, 141 (1977).Google Scholar
16. Evans, T. et al.. J. Phys. C:Solid State Phys. 14, L379 (1981).Google Scholar
17. Woods, G. S. et al., Phil. Mag. B 62, 589 (1990).Google Scholar
18. Jones, R. et al., Phil. Mag. Lett. 66, 67 (1992).Google Scholar
19. Briddon, P. R. and Jones, R., Physica B 185, 179 (1993).Google Scholar
20. Jones, R. et al., Mater. Sci. Forum 143, 45 (1994).Google Scholar
21. Machi, I. Z. et al., Physica B 289-290, 507 (2000).Google Scholar
22.See, for example, Payne, M. C. et al.., Rev. Mod. Phys. 64, 1045 (1992) and references therien.Google Scholar
23. Perdev, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
24. Lassonem, K. et al., Phys. Rev. B 47, 10142 (1993).Google Scholar
25. Baraff, G. A. and Schlüter, M., Phys. Rev. B 30, 1835 (1984).Google Scholar
26. Bachelet, G. B. et al., Phys. Rev. B 24, 4736 (1981).Google Scholar
27. Erwin, S. C. et al., Phys. Rev. B 42, 11056 (1990).Google Scholar
28. Jackson, K. et al., Phys. Rev. B 41, (1990).Google Scholar
29. Smith, W. V. et al., Phys. Rev. B 115, 1546 (1959).Google Scholar
30. Kajihara, S. A. et al., Phys. Rev. B 66, 2010 (1991).Google Scholar
31. Pöykkö, S. et al., Comp. Mat. Sci. 10, 351 (1998).Google Scholar
32. Briddon, P. R. et al., in New Diamond Science and Technology, edited by Glass, J. T., Butler, J. E. and Roy, R., Mater. Res. Symp. Conf. (Materials Research Society, Pittsburg, PA, 1991) p.63.Google Scholar
33. Stich, P. K. et al., Solid State Commun. 100, 549 (1996).Google Scholar
34. Cotton, P. A., Wilkinson, G., and Gaus, P. L., Basic Inorganic Chemistry (3rd Edition, John Willey & Sons, New York 1995) p.107.Google Scholar
35. Bode, B. M. and Gordon, M. S., J. Mol. Graphics Mod. 16, 133 (1998).Google Scholar
36. Katayama-Yoshida, H. et al., Phys. Stat. Sol. (b) 210, 429 (1998).Google Scholar
37. Yu, B. D. et al., Phys. Phys. Lett. 76, 976 (2000).Google Scholar
38. Yu, B. D., private communicationGoogle Scholar
39. Miyazaki, T. and Okushi, H., Diamond Relat. Mater. 10, 440 (2001).Google Scholar
40. Miyazaki, T. and Okushi, H., Diamond Relat. Mater. in pres.Google Scholar
41. Woosa, G. S., Physica B 50, 673 (1984);Google Scholar
42. kanda, H. et al., Diamond Relat. Mater. 8, 1441 (1999).Google Scholar
43. Dollinger, G. et al., Diamond Relat. Mater. 4, 591 (1995);Google Scholar
44. Zhou, X. et al., Phys. Rev. B 54, 7881 (1996);Google Scholar
45. Connel, S. H. et al., Mater. Sci. Forum 258-263, 753 (1997);Google Scholar
46. Talbot-Ponsonby, D. F. et al., Phys. Rev. B 57, 2264 (1998).Google Scholar
47. Hayashi, K. et al., J. Appl. Phys. 81, 774 (1997).Google Scholar
48. Samlenski, R. et al., Phys. Phys. Lett. 67, 2798 (1995).Google Scholar
49. Aryasetiawan, F. and Gunnarsson, O. Rep. Prog. Rep. 61, 237 (1998); W. G. Aulbur, L. Jönsson and J. W. Wilkins, Sol. Stat. Phys. 54, 1 (1999).Google Scholar