Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:37:37.726Z Has data issue: false hasContentIssue false

Positron Lifetime Measurements in Nanostructured Ni-Al Samples

Published online by Cambridge University Press:  14 March 2011

S. Van Petegem
Affiliation:
NUMAT, Subatomic and Radiation Physics Dept., Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium
D. Segers
Affiliation:
NUMAT, Subatomic and Radiation Physics Dept., Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium
C. Dauwe
Affiliation:
NUMAT, Subatomic and Radiation Physics Dept., Ghent University, Proeftuinstraat 86, B-9000 Ghent, Belgium
F. Dalla Torre
Affiliation:
Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
H. Van Swygenhoven
Affiliation:
Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
M. Yandouzi
Affiliation:
EMAT, Centre for Electron Microscopy and Materials Science, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
D. Schryvers
Affiliation:
EMAT, Centre for Electron Microscopy and Materials Science, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
G. Van Tendeloo
Affiliation:
EMAT, Centre for Electron Microscopy and Materials Science, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
J. Kuriplach
Affiliation:
Dept. of Low Temperature Physics, Charles University, V Holesovickach 2, CZ-18000 Prague 8, Czech Republic
M. Hou
Affiliation:
Physique des Solides Irradiés CP234, Université Libre de Bruxelles, Bd du Triomphe, B-1050 Brussels, Belgium
E.E. Zhurkin
Affiliation:
Dept. of Experimental Nuclear Physics, St. Petersburg State Technical University, Polytekhnicheskaya 29, 195251, St. Petersburg, Russia
Get access

Abstract

Positron lifetime spectroscopy is an effective tool to study various types of defects in materials including nanostructured ones. The size of free volumes associated with defects can be estimated using the lifetime components found in the measured spectra. Positron lifetime experiments are performed on nanocrystalline Ni-Al samples synthesized by the inert-gas condensation technique. The samples are further characterized by means of X-ray diffraction, electron diffraction and microscopy techniques as well as density measurements. In the lifetime spectra we observe three lifetime components corresponding to different annihilation sites in the samples. These lifetimes are compared with the results of simulations of positron lifetimes in modeled Ni-Al samples obtained using molecular dynamics and Monte Carlo calculations. Finally, we present positron lifetime results for nanocrystalline Ni3Al samples which were produced or annealed at different temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hautojärvi, P. and Corbel, C., in Positron Spectroscopy of Solids, edited by Dupasquier, A. and Mills, A.P. Jr., (IOS Press, Amsterdam, 1995) p. 491 Google Scholar
2. Nieminen, R. M., in Positron Spectroscopy of Solids, edited by Dupasquier, A. and Mills, A.P. Jr., (IOS Press, Amsterdam, 1995) p. 443 Google Scholar
3. Sanders, P. G., Fougere, G. E., Thompson, L.J., Eastman, J. A. and Weertman, J. R., Nanostructured Materials 8, 243 (1997)Google Scholar
4. Mondelaers, W., Laere, K. Van, Goedefroot, A. and Bossche, K. Van den, Nucl.Inst.Met.A 368, 278 (1996)Google Scholar
5. Kansy, J., Nucl. Instr. Meth. A 374, 235 (1996).Google Scholar
6. Pauwels, B., Yandouzi, M., Schryvers, D., Tendeloo, G. Van, Verschoren, G., Lievens, P., Hou, M. and Swygenhoven, H. Van, this proceedingsGoogle Scholar
7. Wang, T., Shimotomai, M. and Doyama, M., J.Phys. F 14, 37 (1984)Google Scholar
8. DasGupta, A., Smedskjaer, L.C., Legnini, D.G. and Siegel, R.W., Mat.Sci.For, 15–18, 1213 (1997)Google Scholar
9. Mills, A.P. and Wilson, R.J., Phys.Rev. A 26, 490 (1982)Google Scholar
10. Schaefer, H.E. and Würschum, R., Phys.Lett. A 119, 370 (1987)Google Scholar
11. Petegem, S. Van, Kuriplach, J., Hou, M., Zurkin, E.E., Segers, D., Morales, A.L., Ettaoussi, S., Dauwe, C. and Mondelaers, W., accepted for publication in Mat.Sci.Forum (2001)Google Scholar
12. Zhurkin, E., Hou, M., Swygenhoven, H. Van, Pauwels, B., Yandouzi, M., Schryvers, D., Tendeloo, G. Van, Lievens, P., Verschoren, G., Kuriplach, J., Petegem, S. Van, Segers, D. and Dauwe, C., these proceedingsGoogle Scholar
13. Kuriplach, J., Petegem, S. Van, Hou, M., Zhurkin, E.E., Swygenhoven, H. Van, Torre, F. Dalla, Segers, D., Morales, A.L. and Dauwe, C., these proceedingsGoogle Scholar