Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:47:50.968Z Has data issue: false hasContentIssue false

Positron Beam Technique For The Study Of Defects At The Si/SiO2 Interface Of A Polysilicon Gated MOS System

Published online by Cambridge University Press:  15 February 2011

M. Clement
Affiliation:
DIMES, Delft University of Technology, P.O. Box 5053, 2600GB Delft, The Netherlands IRI, Delft University of Technology, P.O. Box 5042, 2600AG Delft, The Netherlands
J. M. M. De Nijs
Affiliation:
DIMES, Delft University of Technology, P.O. Box 5053, 2600GB Delft, The Netherlands
H. Schut
Affiliation:
IRI, Delft University of Technology, P.O. Box 5042, 2600AG Delft, The Netherlands
A. Van Veen
Affiliation:
IRI, Delft University of Technology, P.O. Box 5042, 2600AG Delft, The Netherlands
R. Mallee
Affiliation:
DIMES, Delft University of Technology, P.O. Box 5053, 2600GB Delft, The Netherlands
P. Balk
Affiliation:
DIMES, Delft University of Technology, P.O. Box 5053, 2600GB Delft, The Netherlands
Get access

Abstract

This work demonstrates that positrons implanted into a 60 nm n-type polysilicon layer with large grains, can be pushed out of this layer by an externally induced electric field. In the case of a metal-oxide-silicon (MOS) system with a such a polysilicon gate, polysilicon-implanted positrons can be efficiently transported towards the SiO2/Si interface where they all are collected. This technique offers new and interesting possibilities to study defects at the SiO2/Si interface of technologically important MOS systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schultz, P. J. and Lynn, K. G., Rev. Mod. Phys. 60, p. 701 (1988).Google Scholar
2. Puska, M. J. and Nieminen, R. M., Rev. Mod. Phys. 66, p. 814 (1994).Google Scholar
3. Asoka-Kumar, P., Lynn, K. G. and Welch, D.O., J. Appl. Phys. 76, p. 4935 (1995).Google Scholar
4. Liszkay, L., Corbel, C., Baroux, L., Hautojärvi, P., Bayhan, M., Brinkman, A. W. and Tararenko, S., Appl. Phys. Lett. 64, p. 1380 (1994).Google Scholar
5. Clement, M., Nijs, J. M. M. de, Balk, P., Schut, H. and Veen, A. van, J. Appl. Phys. 79, p. 9029 (1996).Google Scholar
6. Clement, M., Nijs, J. M. M. de, Balk, P., Schut, H. and Veen, A. van, Sceduled for J. Appl. Phys. 81, issue February 1997.Google Scholar
7. Clement, M., Nijs, J. M. M. de, Veen, A. van, Schut, H. and Balk, P., IEEE Trans. on Nucl. Sc. NS–42, p. 1717 (1995).Google Scholar
8. French, P.J., Drieënhuizen, B.P., Poenar, D., Goosen, J.F.L., Mallee, R., Sarro, P.M. and Wolffenbuttel, R., J. Microelectromechanical Systems, 5, p. 187 (1996).Google Scholar
9. Veen, A. van, J. Trace Microprobe Techn. 8, p. 1 (1990).Google Scholar