Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T18:23:35.893Z Has data issue: false hasContentIssue false

Porous Silicon Nanostructured Materials for Sensing Applications: Molecular Assembling and Electrochemical or Optical Evaluation

Published online by Cambridge University Press:  02 March 2016

J. Márquez
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, Zona Universitaria, CP 78210, San Luis Potosí, México.
M. De la Cruz-Guzmán
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, Zona Universitaria, CP 78210, San Luis Potosí, México.
L.F. Cházaro
Affiliation:
División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4ª sección C.P. 78216. San Luis Potosí, México.
G. Palestino*
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, Zona Universitaria, CP 78210, San Luis Potosí, México.
*
*Corresponding author: [email protected]
Get access

Abstract

Porous silicon (PSi) combines the potential of miniaturization with a very large surface area. The PSi surface can be chemically modified resulting in a high sensitivity (low detection threshold) device for chemical and biomolecular sensing. In previous work, we have shown that redox proteins and fluorescent ligands can be infiltrated into PSi (PSiMc) structures. The hybrid devices have shown interesting new properties produced by the coupling of the individual properties of PSi nanostructures and the modifiers. In this work, we have obtained a PSiMc/redox protein bioelectrode, which presents a quasi-reversible electrochemical response. This effect was attributed to the semiconducting nature of the PSi substrate and to the functional groups of the crosslinking molecules (MPTS), which together produce a capacitive effect on the device. On the other hand, the chemical modification of PSiMc with fluorescent ligands allowed us to fabricate fluorescent PSi hybrid nanostructures, which were tested for the detection of environmental pollutants such as heavy metals (specifically Hg2+). We found that the selectivity of this optical device depends on the selected recognizing molecule. The captured metal induces the formation of a metallic complex that shows higher fluorescence compared with the sensor device. These results demonstrate the viability of using porous silicon as optical sensors and electrochemical biosensors. The infiltration of fluorescent recognizing molecules and proteins into the PSi matrix were evaluated by specular reflectance, FTIR spectroscopy, fluorescence spectroscopy and cyclic voltammetry.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kulathuraan, K., Mohanraj, K. and Natarajan, B., Spectrochim. Acta, Part A 152, 5157 (2016).CrossRefGoogle Scholar
Roy Chaudhuri, C., Sens. Actuators B 210, 310323(2015).CrossRefGoogle Scholar
Sailor, M.J and Link, J.R, Chem. Commun. 11, 13751383 (2005).CrossRefGoogle Scholar
Márquez, J., Cházaro-Ruiz, L.F., Zimányi, L. and Palestino, G., Electrochim. Acta 140, 550556 (2014).CrossRefGoogle Scholar
Kermad, A., Sam, S., Ghella, N., Khaldi, K. and Gabouze, N., J. Mater. Sci. Eng. B 178, 11591164 (2013).CrossRefGoogle Scholar
De Louise, L.A., Kou, P.M. and Miller, B.L., Anal. Chem. 77, 32223230 (2005).CrossRefGoogle Scholar
Palestino, G., Agarwal, V., Aulombard, R., Perez, E. and Gergely, C., Langmuir 24, 1376513771 (2008).CrossRefGoogle Scholar
De la Cruz-Guzman, M., Aguilar-Aguilar, A., Hernandez-Adame, L., Bañuelos-Frias, A., Medellín-Rodríguez, F.J. and Palestino, G., Nanoscale Res. Lett. 9, 19 (2014).CrossRefGoogle Scholar
Shtenberg, G., Massad-Ivanir, N., Engin, S., Sharon, M., Fruk, L. and Segal, E., Nanoscale Res. Lett. 7, 16 (2012).CrossRefGoogle Scholar
Baratto, C., Faglia, G., Comini, E., Sberveglieri, G., Taroni, A., La Ferrara, V., Quercia, L. and Di Francia, G., Sens. Actuators B 77, 6266 (2001).CrossRefGoogle Scholar
Zhang, H., Jia, Z., Lv, X., Hou, J., Liu, X., Mad, J. and Zhou, J., Curr. Appl. Phys. 13, 736742 (2013).CrossRefGoogle Scholar
Mathew, F.P. and Alocilja, E.C., Biosens. Bioelectron. 20, 16561661(2005).CrossRefGoogle Scholar
De la Cruz-Guzman, M., Aguilar, A., Bañuelos-Frias, A., Chazaro-Ruiz, L.F. and Palestino, G., ECS Trans. 64, 3134 (2014).CrossRefGoogle Scholar
Zhang, X., Xiao, Y. and Qian, X., Angew. Chem. Int. Ed. Engl. 47, 80258029 (2008).CrossRefGoogle Scholar
Finocchio, E., Macis, E., Raiteri, R. and Busca, G., Langmuir 23, 25052509 (2007).CrossRefGoogle Scholar