Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:38:02.514Z Has data issue: false hasContentIssue false

Porewater in Compacted Water-Saturated MX-80 Bentonite

Published online by Cambridge University Press:  28 March 2012

Torbjörn Carlsson
Affiliation:
VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland.
Arto Muurinen
Affiliation:
VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland.
Michał Matusewicz
Affiliation:
VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland.
Andrew Root
Affiliation:
MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland.
Get access

Abstract

Bentonite is planned to be used in many countries as a buffer material in repositories for spent nuclear fuel. The proper understanding and modelling of the functioning of the water-saturated bentonite requires knowledge about the bentonite microstructure and also the way water is distributed between different phases. This paper presents experimental results from our studies of water in compacted, water-saturated MX-80 bentonite at dry densities in the range 0.7-1.6 g/cm3. Three techniques, Cl-porosity, SAXS and proton NMR measurements, were applied to samples kept at room temperature, while TEM imaging was applied to high pressure frozen samples. The combined results of these techniques strongly indicate that the two major water phases in the compacted MX-80 bentonite samples are ‘interlayer’ and ‘non-interlayer’ water. The results of the relative amounts of different water types by SAXS and NMR are very similar. The results by Cl-porosity measurement indicate that only part of the non-interlayer water is available for anions. Those observations are discussed in comparison to TEM micrographs. Our study provides solid experimental evidence for the presence of two major water phases in water-saturated bentonite and estimates their relative proportions and pore sizes.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. SKB. SKB TR-10-12, Stockholm, Sweden (2010).Google Scholar
2. Posiva. TKS-2009, Eurajoki, Finland (2010).Google Scholar
3. Holmboe, M.. Doctoral Thesis, Royal Institute of Technology , Stockholm, Sweden (2011).Google Scholar
4. Kozaki, T., Inada, K., Sato, S., Ohashi, H.. J. Contam. Hydrol., 47(2–4), 159170 (2001).10.1016/S0169-7722(00)00146-7Google Scholar
5. Bourg, I.C., Bourg, A.C.M., Sposito, G., J. Contam. Hydrol., 61(1–4), 293302 (2003).10.1016/S0169-7722(02)00128-6Google Scholar
6. Muurinen, A., Karnland, O., Lehikoinen, J., Phys. Chem. Earth, Parts A/B/C, 29(1), 119127 (2004).10.1016/j.pce.2003.11.004Google Scholar
7. Suzuki, S., Sato, H., Ishidera, T., Fujii, N., J. Contam. Hydrol., 68(1–2), 2337 (2004).10.1016/S0169-7722(03)00139-6Google Scholar
8. Wersin, P., Curti, E., Appelo, C.A.J., Appl. Clay Sci., 26(1–4), 249257 (2004).10.1016/j.clay.2003.12.010Google Scholar
9. Van Loon, L., Glaus, M., Muller, W., Appl. Geochem., 22(11), 25362552 (2007).10.1016/j.apgeochem.2007.07.008Google Scholar
10. Muurinen, A.. Posiva Working Report 2009-42 (2009).Google Scholar
11. Pusch, R., Karnland, O., Hökmark, H., SKB TR-90–43 (1990).Google Scholar
12. Ohkubo, T., Kikuchi, H., Yamaguchi, M., Phys. Chem. Earth 33, S169S176 (2008).10.1016/j.pce.2008.10.042Google Scholar
13. Montavon, G., Guo, Z., Tournassat, C., Grambow, B., Le Botlan, D., Geochim. Cosmochim. Acta 73, 72907302 (2009).10.1016/j.gca.2009.09.014Google Scholar
14. Tournassat, C., Appelo Geochim, C.A.J.. Cosmochim. Acta 75, 36983710 (2011).10.1016/j.gca.2011.04.001Google Scholar
15. Farrar, T. C., Becker, E.D., Pulse and Fourier Transform NMR: Introduction to Theory and Methods , Academic Press, New York (1971).Google Scholar
16. Waugh, J.S., Wang, C.H.. Phys. Rev., 162, 209216 (1967).10.1103/PhysRev.162.209Google Scholar
17. Santyr, G.E., Henkelman, R.M., Bronskill, M.J., J. Magn. Reson. 79, 2844 (1988).Google Scholar
19. Studer, D., Graber, W.; Al-Amoudi, A., Eggli, P., J. Microsc., 203, 285294 (2001).10.1046/j.1365-2818.2001.00919.xGoogle Scholar
20. Abramoff, M. D., Magalhaes, P. J., Ram, S. J., Biophotonics International, 11, 3642 (2004).Google Scholar