Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:40:14.106Z Has data issue: false hasContentIssue false

Polytope Models of Metallic Glasses: S-Band Electronic Properties

Published online by Cambridge University Press:  26 February 2011

Jonathan V. Selinger
Affiliation:
Department of Physics, Harvard University Cambridge, Massachusetts 02138
David R. Nelson
Affiliation:
Department of Physics, Harvard University Cambridge, Massachusetts 02138
Get access

Abstract

Inspired by the experiments of Turnbull (1952) on undercooled liquid mercury, many investigators have argued that polytetrahedral short-range order is an important ingredient in the structure of undercooled liquids and metallic glasses. A paradigm for such order is “polytope {3,3,5},” which is a regular lattice of 600 perfect tetrahedra with an icosahedral point symmetry embedded on the surface of a four-dimensional sphere. We present results for the band structure of polytope {3,3,5} in the presence of disclinations, and compare them with band structures obtained from dense random packing models of metallic glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernal, J. D. (1964). Proc. Roy. Soc. London A 280, 299.Google Scholar
Coxeter, H. S. M. (1969). “Introduction to Geometry.Wiley, New York.Google Scholar
Coxeter, H. S. M. (1973). “Regular Polytopes.Dover, New York.Google Scholar
Frank, F. C. (1952). Proc. Roy. Soc. London A 215, 43.Google Scholar
Frank, F. C., and Kasper, J. S. (1958). Acta Cryst. 11, 184.Google Scholar
Frank, F. C., and Kasper, J. S. (1959). Acta Cryst. 12, 483.Google Scholar
Gaspard, J. (1976). In “Structure and Excitations of Amorphous Solids” (Lucovsky, G. and Galeener, F. L., eds.), AIP Conf. Proc. 31, pp. 372377, American Institute of Physics, New York.Google Scholar
Mosseri, R. (1984). Ph.D. thesis (unpublished).Google Scholar
Mosseri, R., and Sadoc, J. F. (1984). J. Phys. (Paris) Lett. 45, L827.Google Scholar
Nelson, D. R. (1983). Phys. Rev. B 28, 5515.Google Scholar
Nelson, D. R., and Widom, M. (1984). Nuci. Phys. B 240 [FS12], 113.Google Scholar
Sachdev, S., and Nelson, D. R. (1984). Phys. Rev. Lett. 53, 1947.Google Scholar
Sadoc, J. F. (1980). J. Phys. (Paris) Colloq. 41, C8326.Google Scholar
Spaepen, F. (1975). Acta Met. 23, 729.Google Scholar
Spaepen, F., and Meyer, R. B. (1976). Scripta. Met. 10, 257.Google Scholar
Straley, J. P. (1985). Materials Science Forum 4, 93.CrossRefGoogle Scholar
Turchi, P., Treglia, G., and Ducastelle, F. (1983). Physics F 13, 2543.Google Scholar
Turnbull, D. (1952). J. Chem. Phys. 20, 411.CrossRefGoogle Scholar
Widom, M. (1985). Phys. Rev. B 31, 6456.CrossRefGoogle Scholar