Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T16:17:07.156Z Has data issue: false hasContentIssue false

Polysilicon thin Films and Devices Produced by Low-Temperature (600°C) Furnace Crystallisation of Hydrogenated Amorphous Silicon (a-Si:H)

Published online by Cambridge University Press:  28 February 2011

T. E. Dyer
Affiliation:
Department of Materials Engineering, University College of Swansea, Singleton Park, Swansea SA2 8PP, U.K.
J. M. Marshall
Affiliation:
Department of Materials Engineering, University College of Swansea, Singleton Park, Swansea SA2 8PP, U.K.
W. Pickin
Affiliation:
Department of Materials Engineering, University College of Swansea, Singleton Park, Swansea SA2 8PP, U.K.
A. R. Hepburn
Affiliation:
Department of Materials Engineering, University College of Swansea, Singleton Park, Swansea SA2 8PP, U.K.
J. F. Davffis
Affiliation:
Department of Materials Engineering, University College of Swansea, Singleton Park, Swansea SA2 8PP, U.K.
Get access

Abstract

In this work, we report on the electronic properties of polysilicon thin films and devices realised via furnace crystallisation of undoped a-Si: H. The onset of crystallisation, degree of amorphisation and average grain size are determined by UV reflectivity and electron microscopy. Grain size is found to increase with decreasing a-Si:H substrate temperature, and a maximum areal grain size of 0.4μm2 is obtained. Optical absorption, DC conductivity and transient photoconductivity measurements are employed to examine carrier transport mechanisms. We observe a Meyer-Neldel relationship between the DC conductivity prefactor σ0 and activation energy . A plasma hydrogenation treatment of the as-crystallised films results in an order of magnitude increase in the DC conductivity and a similar increase in photoconductivity. This is consistent with a shift of the Fermi level position 0.06 eV towards the conduction band. Additionally, analysis of the transient photoconductivity infers a reduced density of states. We discuss the implications of our results for polysilicon TFT optimisation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Malhi, S.D.S., Shichijo, H., Banerjee, S.K., Sundaresan, R., Elahy, M., Pollack, G.P., Richardson, W.F., Shah, A.H., Hite, L.R., Womack, R.H., Chatterjee, K. and Lam, H.W., IEEE. Trans. Elect. Dev. 32, 258, (1985).Google Scholar
2. Ohwada, J-I., Takabatake, M., Ono, Y.A., Mimura, A., Ono, K. and Konishi, N., IEEE. Trans. Elect. Dev. 36, 1923, (1989).Google Scholar
3. Harbeke, G., Kransbaur, L., Steigmeier, E.F., Widmer, A.C., Kappert, H.F. and Neuge-bauer, G., Appl. Phys. Lett. 42, 249, (1983).Google Scholar
4. Ipri, A.C. and Kaganowicz, G., IEEE. Trans. Elect. Dev. 37, 1771, (1989).Google Scholar
5. Nakazawa, K. and Tanaka, K., J. Appl. Phys. 68, 1029, (1990).Google Scholar
6. Katoh, T., IEEE. Trans. Elect. Dev, 35, 923, (1988).Google Scholar
7. Yamauchi, N., Hajjar, J-J.J. and Reif, R., IEEE. Trans. Elect. Dev, 38, 55, (1991).Google Scholar
8. Kim, D.M., Khonder, A.N., Ahmed, S.S. and Shah, R.R., IEEE. Trans. Elect. Dev, 31, 480, (1984).Google Scholar
9. Hirose, M., Taniguchi, M. and Osaka, Y., J. Appl. Phys, 50, 377, (1979).Google Scholar
10. Seto, J.Y.W., J. Appl Phys, 46, 12, (1975).Google Scholar
11. Kobka, V.G., Komrenko, R.P., Medvedev, Y.V. and Tretyak, O.V., Sov. Phys. Semicond, 16, 1404, (1982).Google Scholar
12. Dimitriadis, C.A., J. Appl. Phys, 68, 862, (1990).Google Scholar
13. Seager, C.H. and Ginley, D.S., J. Appl. Phys. 52, 1050, (1980).Google Scholar
14. Rodder, M., Antoniadis, D.A., Scholz, F. and Kalnitsky, A., IEEE. Trans. Elect. Dev. Lett, 8, 27, (1984).Google Scholar
15. Pollack, G.P., Richardson, W.F., Malhi, S.O.S., Bonfield, T., Shichijo, H., Banerjee, S., Elahy, M., Shah, A.K., Womak, R. and Chatterjee, P.K., IEEE. Trans. Elect. Dev. Lett, 5, 468, (1984).Google Scholar
16. Sameshima, T. and Usui, S., J. Appl. Phys, 70, 1281, (1991).Google Scholar
17. Jackson, W.B., Johnson, N.M. and Biegelsen, D.K., Appl. Phys. Lett, 43, 195, (1983).Google Scholar
18. Dash, W.C. and Newman, R., Phys. Rev, 99, 1151, (1955).Google Scholar
19. Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon Press, Oxford, 1979).Google Scholar
20. Faughnan, B., Appl. Phys. Lett, 50, 5, (1987).Google Scholar
21. Greenaway, D.L. and Harbeke, G., Optical Properties and Band Structure of Semiconductors, (Pergamon Press, Oxford, 1968), p. 56.Google Scholar
22. Harbeke, G. and Jastrzebski, L., J. Electrochem. Soc, 137, 696, (1990).Google Scholar
23. Zanzucchi, P.J., in Semiconductors and Semimetals, 21B, ed. Pankove, J.L., (Academie Press Inc, London, 1984), p. 113.Google Scholar
24. Overhof, H. and Thomas, P., Electronic Transport in Hydrogenated Amorphous Semiconductors, (Springer-Verlag, Heidelberg, 1989)Google Scholar
25. Dimitriadis, C.A., Economou, N.A. and Coxon, P.A., Appl. Phys. Lett, 59, 172, (1991).Google Scholar
26. Marshall, J.M., Rep. Prog. Phys, 46, 1235, (1983).Google Scholar
27. Pandya, R. and Khan, B.A., J. Appl. Phys, 62, 3244, (1987).Google Scholar
28. Pattyn, H., Dyer, T., Debenest, P., Heyns, M., Schaekers, M., Nijs, J., Barclay, R.P., Mertens, R. and Marshall, J.M., in P oly crystalline Semiconductors II, edited by Strunk, H. and Werner, J. (Springer-Verlag, Heidelberg, 1991), p. 266.Google Scholar
29. Scher, H. and Montroll, E.W., Phys. Rev. B, 12, 2455, (1975).Google Scholar
30. Orenstein, J., Kastner, M. and Vaninov, V., Phil. Mag. B, 46, 23, (1982).Google Scholar
31. Cambell, D.R., Appl. Phys. Lett, 37, 604, (1980).Google Scholar
32. Jousse, D., Delage, S.L. and Iyer, S.S., Phil. Mag. B, 63, 443, (1991)Google Scholar
33. Khan, B.A. and Pandya, R., IEEE. Trans. Elect. Dev, 37, 1727, (1990).Google Scholar