Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T14:42:10.056Z Has data issue: false hasContentIssue false

Polysaccharide Nanocomposites Reinforced with Graphene Oxide and Keratin-grafted Graphene Oxide

Published online by Cambridge University Press:  06 November 2013

Claramaría González
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro, México.
Ana Hernández
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro, México. Instituto Tecnológico de Querétaro, Querétaro, México.
Víctor Castaño
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro, México.
Oxana Kharissova
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México.
Rodney Ruoff
Affiliation:
The University of Texas at Austin, USA.
Carlos Velasco-Santos
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro, México. Instituto Tecnológico de Querétaro, Querétaro, México.
Get access

Abstract

Nanocomposites of polysaccharide matrices, chitosan-starch and carboxymethyl cellulose-starch reinforced with graphene oxide and graphene grafted with keratin were developed. Composites films had been prepared for the casting/solvent evaporation method. The nanocomposites of chitosan/starch matrix improved substantially their mechanical properties with respect to the film without reinforcing, obtaining an increase of 929 % in the storage modulus (E’ 35°C) with only 0.5 wt% of graphene oxide and outstanding increments in E’ at 150°C and 200°C when keratin grafted graphene oxide is incorporated (0.1 wt%). In contrast, the graphene oxide incorporated into the carboxymethyl cellulose-starch matrix tends to decrease the stiffness of the film behaving in opposite way to nanocomposite of chitosan/starch matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arora, A., and Padua, G. W., J. Food Sci. 75, 4349 (2010).CrossRefGoogle Scholar
Westervelt, R. M., Science 320, 324325 (2008).Google Scholar
Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385388 (2008).CrossRefGoogle Scholar
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., Nano Lett. 8, 902907(2008).CrossRefGoogle Scholar
Li, D., and Kaner, R. B., Science 320, 11701171 (2008).CrossRefGoogle ScholarPubMed
Liu, Z., Robinson, J. T., Sun, X., and Dai, H., J. Am. Chem. Soc. 130, 1087610877(2008).CrossRefGoogle Scholar
Shen, J., Shi, M., Yan, B., Ma, H., Li, N., Hu, Y., and Ye, M., Colloids Surf. B 81, 434438 (2010).CrossRefGoogle Scholar
Park, S., Dikin, D. A., Nguyen, S. T., and Ruoff, R. S., J. Phys. Chem. C. 113, 1580115804 (2009).CrossRefGoogle Scholar
Martínez-Hernández, A. L.; Velasco-Santos, C.; De Icaza, M.;Castaño, V. M. Microstructural characterisation of keratin fibres from chicken feathers. Int. J. Environ. Pollut.23, 162178 (2005).CrossRefGoogle Scholar
Stankovich, S., Piner, R. D., Nguyen, S. T., and Ruoff, R. S., Carbon 44, 33423347 (2006).CrossRefGoogle Scholar
Schrooyen, P. M. M., Dijkstra, P. J., Oberthur, R. C., Bantjes, A., and Feijen, J., J. Agric. Food Chem. 48, 43264334 (2000).CrossRefGoogle Scholar
Mathew, S.. Brahmakumar, M., and Abraham, T. E., Biopolymers 82, 176187 (2006).CrossRefGoogle Scholar
Han, D., Yan, L., Chen, W., and Li, W., Carbohydr. Polym. 83, 653658 (2011).CrossRefGoogle Scholar
Garcia, M. A., Pinotti, A., and Zaritzky, N., Starch/Staerke 58, 453463 (2006).CrossRefGoogle Scholar
Loung, N. D., Pahimanolis, N., Hippi, U., Korhonen, J. T., Ruokolainen, J., Johansson, L. S., Nam, J. D., and Seppälä, J.;, J. Mater. Chem. 21, 1399113998 (2011).CrossRefGoogle Scholar
Rueda, D. R., Secall, T., and Bayer, R. K., Carbohydr. Polym. 40, 4956 (1999).CrossRefGoogle Scholar