Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:56:05.679Z Has data issue: false hasContentIssue false

Polymerizable Self-Organized Membranes: A Novel Class of Organic Compounds

Published online by Cambridge University Press:  15 February 2011

Alok Singh
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, Washington DC. 20375-5348
Michael Markowitz
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, Washington DC. 20375-5348
Gan Moog Chow
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, Washington DC. 20375-5348
Get access

Abstract

Molecular Self-assembly of amphiphilic phospholipid molecules (containing a hydrophobic acyl chain and a hydrophilic phosphate group attached to glycerol backbone) and other amphiphiles offers a versatile approach to form ordered structures. Stabilization of lipid microstructures by polymerization renders them useful for practical applications in the areas ranging from controlled release technology to template mediated synthesis of metals. Our efforts are focussed on the development and use of polymerizable diacetylenic phospholipids and their microstructures as template for chemical synthesis. The surface of vesicles and lipid microcylinders (0.5 μm dia.) is made reactive by chemically modifying the hydrophilic region of phospholipids. Lipids with chemically reactive sites were incorporated into lipid membranes predominantly formed from charge neutral lipids and used for binding metal ions and growing fine metal particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chow, G. M., Markowitz, M. A., and Singh, A., JOM, 45, 62 (1992).Google Scholar
2. Heuer, A. et al. , Science, 255, 1098 (1992).Google Scholar
3. Alper, M., MRS Bulletin, 17(11), 53 (1992).Google Scholar
4. Schnur, J. M., Science, 262, 1669 (1993).Google Scholar
5. Bangham, A. D., Standish, M.M., and Watkins, J. C., J.Biol.Chem., 13, 238 (1965).Google Scholar
6. Regen, S. L., Czech, B., and Singh, A., J. Amer. Chem. Soc., 102, 6638 (1980).Google Scholar
7. Johnston, D. S., Sanghera, S., Pons, M., and Chapman, D., Biochim. Biophys. Acta, 602, 57 1(980).Google Scholar
8. Hub., H., Hupfer, B., Koch, H., and Ringsdorf, H., Angew. Chem. Int. Ed. Engl., 19, 938 (1980).Google Scholar
9. O'Brien, D. F., Klingbiel, R. T., and Whitesides, T. H., J. Polym. Sci., Polym. Lett. Ed., 19, 95 (1981).Google Scholar
10. Singh, A. and , Schnur, J. M. Polymerizable lipids in Phospholipids Handbook, (G.Cevc, Ed.) Marcel Dekker, NY 1993, p 233.Google Scholar
11. Singh, A., Thompson, R. B., and Schnur, J.M., J. Amer. Chem. Soc., 108, 2785 (1986).Google Scholar
12. Yager, P., and Schoen, P. E., Mol. Cryst. Liq. Cryst., 106, 371 (1984).Google Scholar
13. Juliano, R. L., Regen, S. L., Singh, M., Hsu, M. J., and Singh, A., Biotechnology, 1, 882 (1983).Google Scholar
14. Regen, S. L., Singh, A., Oehme, G., and Singh, M., Biochim. Biophys. Res. Commun., 101, 131 (1981).Google Scholar
15. Mehta, R., Hsu, M. J., Juliano, R. L., Krause, H. J., and Regen, S. L., J. Pharm. Sci., 75, 579 (1986).Google Scholar
16. Krause, H. J., Juliano, R. L., and Regen, S., J. Pharm. Sci., 76, 1 (1987).Google Scholar
17. Ligler, F. S., Fare, T. L., Seib, K.D., Smuda, J. W., Singh, A., Ayers, M. E., Dalziel, A. and Yager, P., Med. Inst. 22, 247 (1988).Google Scholar
18. Fare, T. L., Singh, A., Seib, K. D., Smuda, J. W., Ahl, P. L., Ligler, F. S., Schnur, J. M., in Molecular Electronics (Hong, Felix T., Ed.), Plenum Publishing Corporation, New York, 1989, p 305.Google Scholar
19. Dalziel, A. W., Georger, J., Price, R. R., Singh, A., and Yager, P., in Membrane Proteins, (Goheen, Steven C., Ed.), Bio-Rad Laboratories Pub.,1986, p. 643.Google Scholar
20. Ahl, P. L., Price, R., Schmuda, J., Gaber, B. P., and Singh, A., Biochim. Biophys. Acta, 1028, 141 (1990).Google Scholar
21. Yager, P., Biosensors 2, 363 919860.Google Scholar
22. Yager, P., Schoen, P. E., Davies, C., Price, R., and Singh, A., Biophys. J. 48, 899, (1985).Google Scholar
23. Rhodes, D. G., Blechner, S. L., Yager, P., and Schoen, P. E., Chem. Phys. Lipids, 49, 39 (1988).Google Scholar
24. Blechner, S. L., Morris, W., Schoen, P.E., Yager, P., Singh, A., Rhodes, D. G., Chem. Phys. lipids, 58, 41 (1991).Google Scholar
25. Schoen, P. E., Nagumo, M., and Singh, A., Chem. Phys. Lipids, 69, 251 (1994).Google Scholar
26. Schnur, J. M., Ratna, B., Selinger, J. V., Singh, A., Easwaran, K. R. K., and Jyothi, G., Science, 264, 945 (1994).Google Scholar
27. Peek, B. M., Callahan, J., Namboodiri, K., Singh, A., and Gaber, B. P., Macromolecules, 27, 292 (1994).Google Scholar
28. Singh, A., and Markowitz, M. A., New J. Chem., 18, 377 (1994).Google Scholar
29. Schnur, J.M., Schoen, P.E., Calvert, J. M., Georger, J. H., and Price, R., Metal Clad Lipid Microstructures, US Patent # 4,911.981, March 27, 1990 Google Scholar
30. Singh, A., Markowitz, M. A., and Tsao, Li-I, Synth. Commun., 22, 2293 (1992).Google Scholar
31. Markowitz, M. A., Schnur, J. M. and Singh, A., Chem. Phys. Lipids, 62, 193 (1992).Google Scholar
32. Markowitz, M. A., Baral, S., Brandow, S. and Singh, A., Thin Solid Films, 224, 242 (1993).Google Scholar
33. Singh, A., Markowitz, Michael and Baral, S., A simple process for producing metallized vesicles and tubules, Navy Case No. 74,204, 1993, US Patent pending.Google Scholar
34. Markowitz, M. A., Chow, G.-M., Baral, S., and Singh, A. in Metallized Plastics IV, (Mittal, K. L., Ed.), Marcel Dekker, 1994, accepted.Google Scholar
35. Markowitz, M. A., Chow, G.-M., and Singh, A., Navy Case No. 76,030, 1994 Google Scholar
36. Markowitz, M. A., Chow, G.-M., and Singh, A., Langmuir, 1994, submittedGoogle Scholar