Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:41:47.397Z Has data issue: false hasContentIssue false

Polymeric Nanospheres Containing Rare Earth Complexes and Colloidal Crystals with Luminescent Properties

Published online by Cambridge University Press:  28 May 2012

Xudong Yang
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Zixi Zhao
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Bowen Shen
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Quan Lin
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Bai Yang
Affiliation:
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
Get access

Abstract

Colloidal particles (CPs) have been the subject of intensive studies and have attracted increasing attention from the scientific community. In this contribution, we present the design and synthesis of luminescent colloidal crystal films. Rare earth complexes as the photoluminescent source is introduced into the polymeric nanospheres system, the diameter can be controlled by changing the polymeric reaction condition, which can act as building blocks to prepare diverse functional materials. Further, three-dimensional (3-D) colloidal crystal films with excellent fluorescent properties are fabricated by self-organization of the monodispersed polymeric nanospheres. The colloidal crystal film indicates a photonic band gap, which depends on the diameter and size-dispersing of the nanospheres building blocks. It shows potential applications in fabricating optical devices, data storage, chemical and biological sensors, and color displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., Lo´pez, C., Meseguer, F., Mı´guez, H., Mondia, J. P., Ozin, G. A., Toader, O., van Driel, H. M., Nature 405, (2000). b) A. Chutinan, S. John, O. Toader, Phys. Rev. Lett. 90, 1239011 (2003).10.1038/35013024Google Scholar
2. Oswald, J. A., Wu, B. I., Mclntosh, K. A., Mahoney, L. J., Verghese, S., Appl. Phys. Lett. 77, 2098 (2000).10.1063/1.1314880Google Scholar
3. Vogel, N., Jung, M., Retsch, M., Knoll, W., Jonas, U., Koper, I., Small. 5, 821(2009).10.1002/smll.200801583Google Scholar
4. Zhang, J. H., Li, Y. F., Zhang, X. M., Yang, B., Adv. Mater. 22, 4249 (2010).,10.1002/adma.201000755Google Scholar
5. Lee, K., Asher, S.A., J. Am. Chem. Soc. 122, 9534 (2000).10.1021/ja002017nGoogle Scholar
6. Whitesides, G. M., Grzybowski, B., Science. 295, 2418 (2002).10.1126/science.1070821Google Scholar
7. Robert, L. Jr. Sherman, , Warren, T. F., Langmuir 21, 5218 (2005).Google Scholar
8. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).10.1103/PhysRevLett.58.2059Google Scholar
9. Noda, S., Tomoda, K., Yamamodo, N., Chutinan, A., Science 289, 604 (2000).10.1126/science.289.5479.604Google Scholar
10. Wang, S., Kitaev, V, Ozin, G. A, J. Am. Chem. Soc. 125, 15589 (2003).10.1021/ja0379969Google Scholar
11. Jiang, Y.N., Yang, X.D., Ma, C., Wang, C.X., Li, H., Dong, F.X, Zhai, X.M., Yu, K., Lin, Q., Yang, B.. small, 6, 2673 (2010).10.1002/smll.201001151Google Scholar
12. Chen, X., Cui, Z. C., Chen, Z. M., Zhang, K., Lu, G., Zhang, G., Yang, B., Polymer. 43, 4147 (2002).10.1016/S0032-3861(02)00262-8Google Scholar