Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:55:57.407Z Has data issue: false hasContentIssue false

Polymeric Electrolytes and Polyelectrolytes: Salt Concentration and Domain Effects on Conductivity

Published online by Cambridge University Press:  21 February 2011

Mark A. Ratner
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL 60208
Stephen D. Druger
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL 60208
A. Nitzan
Affiliation:
Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
Get access

Abstract

Solvent-free polymer electrolytes and polyelectrolytes are usually studied at quite high ionic concentrations, (into the range above 1M). Under these conditions, correlation effects arising from ion-polymer and ion-ion interactions are expected to be important in the mechanism of conductivity. We sketch some specific ionic effects, separating those actittg on the mobility from those effecting carrier concentration. Mobility effects include reduction of the fluidity due to the effective cross-linking by cations, screening of applied fields due to high ionic concentrations, frictional drag due to counterion motion, and in some polymer hosts, lowered local availability of cation solvation sites due to reduction of the number of coordinating basic oxygens. Reduction of the carrier density from its stoichipmetric value can be discussed in terms of a generalized ion-pairing model. Though the concentrations usually studied are so high that Debye-Huckel theory is invalid and the stoichiometric average cation-anion separation is smaller than the Bjerrum length (a situation in which ordinary electrolyte theory considers all ions paired), nevertheless consideration in terms of contact ion pairs, solvent separated ion pairs and mean stoichiometric separation can be used to compute the effective concentration of carriers. Estimates based on an electrostatic continuum, cavity model for the binding energy of a pair describe the reduction of effective carrier number observed in poly (propylene oxide) materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fenton, D.E., Parker, J.M. and Wright, P.V., Polymer 14, 589 (1973); P.V. Wright, Brit. Polym. J. 7, 319 (1979).CrossRefGoogle Scholar
2. MacCallum, J.R. and Vincent, C.A., eds., Polymer Electrolyte Reviews (Elsevier Science Publishers, London, 1987); Brit. Polym. J. 20, (3) (1988).Google Scholar
3. cf. Ratner, M.A. and Shriver, D.F., Chem. Revs. 88, 109 (1988); C.A. Vincent, Prog. Sol. St. Chem 17, 145 (1987).Google Scholar
4. Blonsky, P.M., Shriver, D.F., Austin, P. and Allcock, H.A., j. Am. Chem. Soc. 106, 6854 (1984).CrossRefGoogle Scholar
5. Spindler, R. and Shriver, D.F., J. Am. Chem. Soc. 110, 3036 (1988); Macromolecules 21, 648 (1988); D. Fish, D.M. Kahn and J. Smid, J. Polye. Prepr. 27, 325 (1986); S.G. Greenbaum, Y.S. Pak, M.C. Wintergill and J.J. Fontanella, Sol. St. Ionics, submitted.Google Scholar
6. Hall, P.G., Davies, G.R., McIntyre, J.E., Ward, I.M., Bannister, D.J. and LeBrocq, K.F., Polym. Comm. 27, 98 (1986); J.M.G. Cowie and A.C.S. Martin, Polymer 28, 627 (1987).Google Scholar
7. Nest, J.F. Le, Gandini, J.G. and Cheradame, H., Brit. Polym. J. 20, 253 (1986).Google Scholar
8. Hardy, L.C. and Shriver, D.F., J. Am. Chem. Soc. 107, 3823 (1985).Google Scholar
9. Ganapathiappan, S., Chen, K. and Shriver, D.F., Macromolecules 21, 2299 (1988).Google Scholar
10. Angell, C.A., Sol. St. lonics 9/10, 3 (1983); 18/19, 72 (1986).Google Scholar
11. Torell, L.M. and Angell, C.A., Brit. Polym. J. 20, 173 (1988).Google Scholar
12. Torell, L.M. and Angell, C.A., preprint.Google Scholar
13. cf. e.g., Watanabe, M., Polymer Electrolyte Reviews 1, (1987).Google Scholar
14. Armand, M.B., Chabagno, J.M. and Duclot, M.J., in Vashishta, P., Mundy, J.N. and Sheroy, G.K., eds., Fast Ion Transport in Solids (Amsterdam, North Holland, 1979).Google Scholar
15. Cheradame, H., in Benoit, H. and Rempp, P., eds., IUPAC Macromolecules (Pergamon, Oxford, 1982).Google Scholar
16. Druger, S.D., Ratner, M.A. and Nitzan, A., Phys. Rev. B31, 3939 (1985); Sol. St. Ionics 18/19, 106 (1986); IUPAC Macromolecules., 9/10, 111 (1983).Google Scholar
17. Ansari, S., Brodwin, M., Stainer, M., Druger, S., Ratner, M.A. and Shriver, D.F., Sol. St. Ionics 17, 101 (1985).Google Scholar
18. Watanabe, M., Rikukawa, M., Sanui, K. and Ogata, N., Macromolecules 19, 188 (1986).Google Scholar
19. Xue, R. and Angell, C.A., Sol. St. Ionics 25, 223 (1987).Google Scholar
20. e.g., Ratner, M.A., Polymer Electrolyte Reviews 1, 230 (1987).Google Scholar
21. LeNest, J.F., Cheradame, H. and Gandini, A., Sol. St. Ionics, in press.Google Scholar
22. Angell, C.A. and Bressel, R.D., J. Phys. Chem. 76, 3244 (1972); cf. also ref. 19.Google Scholar
23. Cf., e.g., Chechetkin, V.R. and Lutovinov, V.S., J. Phys. France 49, 159 (1988).Google Scholar
24. Bjerrum, N., Kgl. danske vidensk. Selsk., Mat. - fys. Medd. 7 (9), (1926); cf. also R.A. Robinson and R.H. Stokes, Electrolyte Solutions, (Butterworths, London, 1968).Google Scholar
25. Pettit, B.M. and Rossky, P.J., J. Chem. Phys. 84, 5836 (1986).Google Scholar
26. Kaplan, M.L., Reitman, E.A., Cava, R.J., Holt, L.K. and Chandross, E.A., Sol. St. Ionics 25, 37 (1987).Google Scholar
27. Chen, K. and Shriver, D.F., work in progress.Google Scholar
28. Wintersgill, M.C., Fontanella, J.J., Greenbaum, S.C. and Adamic, K.M., Brit. Polym. J. 20, 195 (1988).CrossRefGoogle Scholar
29. Nitzan, A. and Ratner, M.A., to be published.Google Scholar
30. Watanabe, M. and Ogata, N., Brit. Polym. J. 20, 181 (1988).Google Scholar
31. MacCallum, J.R., Tomlin, A.S. and Vincent, C.A., Eur. Poly. J. 22, 787 (1986).Google Scholar