Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:52:26.156Z Has data issue: false hasContentIssue false

Polymer-Derived Si3N4/BN Composites

Published online by Cambridge University Press:  21 February 2011

Wayde R. Schmidt
Affiliation:
Departments of Materials Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
William J. Hurley Jr.
Affiliation:
Departments of Materials Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Vijay Sukumar
Affiliation:
Departments of Materials Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Robert H. Doremus
Affiliation:
Departments of Materials Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Leonard V. Interrante
Affiliation:
Departments ofChemistry, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Get access

Abstract

Partially crystalline silicon nitride, with a specific surface area greater than 200 m2/g, is obtained by the pyrolysis of an organometallic, polymeric precursor under NH3 to 1000 °C. Additional heating to 1400 °C under N2 produces alpha-Si3N4. The addition of up to 15% h-BN was found to affect the coarsening characteristics of amorphous silicon nitride by promoting surface area reduction and suppressing crystallinity. By combining Si3N4 and BN molecular and polymeric precursors prior to ceramic conversion, or incorporating Si, N, and B into a single preceramic polymer, the relative proportion and crystallinity of the ceramic phases can be controlled in the resulting Si3N4/BN composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fukunaga, T., Goto, T., Misawa, M., Hirai, T., and Suzuki, K., J. Non-Cryst. Solids, 95/96 (1987) 1119.Google Scholar
2. Hirai, T. in Emergent Process Methods for High-Technology Ceramics, Materials Science Research Vol. 17, eds. Davis, R. F., Palmour, H., and Porter, R. L., Plenum Press (1984) 329.Google Scholar
3. Hirai, T., Goto, T., and Sakai, T. in Emergent Process Methods for High-Technology Ceramics, Materials Science Research Vol. 17, eds. Davis, R. F., Palmour, H., and Porter, R. L., Plenum Press (1984) 347.Google Scholar
4. Goto, T. and Hirai, T., J. Mater. Sci. Letters, 7 (1988) 548).Google Scholar
5. Sugiyama, K. and Ohsawa, Y., I. Mater. Sci. Letters, 7 (1988) 1221).Google Scholar
6. Mazdiyasni, K. S. and Ruh, R., J. Am. Ceram. Soc., 64[7] (1981) 415.Google Scholar
7. Laine, R. M., Blum, Y., Hamlin, R., and Chow, A. in Ultrastructure Processing of Advanced Ceramics, eds. Mackenzie, J. D. and Ulrich, D. R., J. Wiley & Sons (1988) 761.Google Scholar
8. Seyferth, D., Wiseman, G. H., and Prud'homme, C., J. Am. Ceram. Soc., 66 (1983) C13.Google Scholar
9. Paciorek, K. J. L. and Kratzer, R. H., Ceram. Eng. Sci. Proc., 9[7-8[ (1988) 993.Google Scholar
10. Paciorek, K. J. L., Harris, D. H., and Kratzer, R. H., J. Polym. Sci. Polym. Chem., 24 (1986) 173).Google Scholar
11. Narula, C. K., Schaeffer, R., and Paine, R. T., J. Am. Chem. Soc., 109 (1987) 5556).Google Scholar
12. Seyferth, D. and Rees, W. S. Jr., Mat. Res. Soc. Symp. Proc., Vol. 121, Materials Research Society (1988).Google Scholar
13. Mirabelli, M. and Sneddon, L., Jnorg. Chem., 27 (1988) 3271).Google Scholar
14. Beck, J., Albani, C., McGhie, A., Rothman, J., and Sneddon, L., Chemistry of Materials, 1 (1989) 433).Google Scholar
15. Schmidt, W. R., Sukumar, V., Hurley, W. J. Jr., Garcia, R., Doremus, R. H., Interrante, L. V., and Renlund, G. M., submitted to J. Am. Ceram. Soc., Oct. 1989.Google Scholar
16. Nyquist, R. A. and Kagel, R. O., Infrared Spectra of Inorganic Compounds, Academic Press (1971) 114.Google Scholar
17. Thomas, J. Jr., Weston, N. E., and O'Connor, T. E., J. Am. Chem. Soc., 84[24] (1963) 4619.Google Scholar
18. Sukumar, V., Master's Thesis, Rensselaer Polytechnic Institute, December, 1989.Google Scholar
19. Sukumar, V., Schmidt, W. R., Doremus, R. H., and Interrante, L. V., submitted to Mat. Letters., Dec. 1989.Google Scholar