Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T00:34:00.584Z Has data issue: false hasContentIssue false

Polymer Tubes by Rolling of Polymer Bilayers

Published online by Cambridge University Press:  01 February 2011

Kamlesh Kumar
Affiliation:
[email protected], Leibniz Institute of Polymer Research Dresden, Dresden, Germany
Bhanu Nandan
Affiliation:
[email protected], Leibniz Institute of Polymer Research Dresden, Dresden, Germany
Valeriy Luchnikov
Affiliation:
[email protected], Institut de Science des Materiaux de Mulhouse, Mulhouse, France
Svetlana Zakharchenko
Affiliation:
[email protected], Leibniz Institute of Polymer Research Dresden, Dresden, Germany
Leonid Ionov
Affiliation:
[email protected], Leibniz Institute of Polymer Research Dresden, Dresden, Germany
Manfred Stamm
Affiliation:
Get access

Abstract

Polymer micro- and nanotubes are of growing interest for design of microfluidic devices, chromatography, biotechnology, medicine chemical sensors, etc. One approach for the design of tubes is based on use of self-rolling thin films. Here we overview our recent progress in the fabrication of polymeric self-rolling tube.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bruzewicz, D. A.; McGuigan, A. P.; Whitesides, G. M. Lab on a Chip 2008, 8, 663671.Google Scholar
2 Martin, C. R. Science 1994, 266, (5193), 19611966.Google Scholar
3 Andersson, H.; van den Berg, A. Sensors and Actuators B-Chemical 2003, 92, 315325.Google Scholar
4 McAllister, D. V.; Wang, P. M.; Davis, S. P.; Park, J. H.; Canatella, P. J.; Allen, M. G.; Prausnitz, M. R. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (24), 1375513760.Google Scholar
5 Huber, D. L.; Manginell, R. P.; Samara, M. A.; Kim, B. I.; Bunker, B. C. Science 2003, 301, (5631), 352354.Google Scholar
6 Vorob'ev, A. B.; Prinz, V. Y. Semiconductor Science and Technology 2002, 17, 614616.Google Scholar
7 Golod, S. V.; Prinz, V. Y.; Mashanov, V. I.; Gutakovsky, A. K. Semiconductor Science and Technology 2001, 16, (3), 181185.Google Scholar
8 Luchnikov, V.; Stamm, M. Physica E-Low-Dimensional Systems & Nanostructures 2007, 37, (1–2), 236240.Google Scholar
9 Luchnikov, V.; Stamm, M.; Akhmadaliev, C.; Bischoff, L.; Schmidt, B. Journal of Micromechanics and Microengineering 2006, 16, (8), 16021605.10.1088/0960-1317/16/8/022Google Scholar
10 Kumar, K.; Luchnikov, V.; Nandan, B.; Senkovskyy, V.; Stamm, M. European Polymer Journal 2008, 44, (12), 41154121.Google Scholar
11 Luchnikov, V.; Sydorenko, O.; Stamm, M. Advanced Materials 2005, 17, (9), 1177-+.Google Scholar
12 Kumar, K.; Nandan, B.; Luchnikov, V.; Simon, F.; Vyalikh, A.; Scheler, U.; Stamm, M. Chemistry of Materials 2009, 21, (18), 42824287.Google Scholar
13 Kumar, K.; Nandan, B.; Luchnikov, V.; Gowd, E. B.; Stamm, M. Langmuir 2009, 25, (13), 76677674.Google Scholar
14 Luchnikov, V.; Kumar, K.; Stamm, M. Journal of Micromechanics and Microengineering 2008, 18, (3).Google Scholar
15 Zakharchenko, S.; Puretskiy, N.; Stoychev, G.; Stamm, M.; Ionov, L. Soft Matter 2010, DOI: 10.1039/c0sm00088d.Google Scholar