Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:46:05.140Z Has data issue: false hasContentIssue false

Polymer Nanofibers Containing Isolated and Aligned Single Wall Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Robert Young
Affiliation:
[email protected], University of Manchester, School of Materials, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Stephen Eichhorn
Affiliation:
[email protected], University of Manchester, School of Materials, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Prabhakaran Kannan
Affiliation:
[email protected], University of Manchester, School of Materials, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Get access

Abstract

Electrospinning has been used to prepare poly(vinyl alcohol) (PVA) nanofibers, with diameters ranging from 1 micron down to 20 nm, that contain dispersions of isolated, well-aligned, single wall carbon nanotubes (SWNTs). The nanofibers were characterized by Raman spectroscopy and single radial breathing modes (RBMs) were found for the SWNTs in the nanofibers indicating debundling of the original SWNT ropes. Moreover a split G' band for some nanotubes and the results of polarized Raman spectroscopy were consistent with the presence of isolated SWNTs, highly aligned along the nanofiber axes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thostenson, E.T., Ren, Z., Chou, T.-W., Comp. Sci. Tech., 61, 1899 (2001)Google Scholar
2. Cooper, C.A., Young, R.J. and Halsall, M., Comp. A: Appl. Sci and Manufact., 32, 410 (2001)Google Scholar
3. Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E., Winey, K.I., Chem. Phys. Lett., 330, 219 (2000)Google Scholar
4. Gommans, H.H., Alldredge, J.W., Tashiro, H., Park, J., Magnuson, J., J. Appl. Phys., 88, 2509 (2000)Google Scholar
5. Hwang, J., Gommans, H.H., Ugawa, A., Tashiro, H., Haggenmueller, R., Winey, K.I., Fischer, J.E., Tanner, D.B., Rinzler, A.G., Phys. Rev. B, 62, R13 310 (2000).Google Scholar
6. Sen, R., Zhao, B., Perea, D., Itkis, M.E., Hu, H., Love, J., Bekyarova, E., Haddon, R.C., Nano Lett., 4, 459 (2004).Google Scholar
7. Banda, S., Ounaies, Z., Clair, T. St., Rud, J., Burney, K., Bowlin, G., Park, C., Harrison, J., Proc. of SPIE, 5761 12 (2005).Google Scholar
8. Ayutsede, J., Ghandi, M., Sukigara, S., Ye, H., Hsu, C.-M., Gogotsi, Y, Ko, F., Biomacromol., 7 208 (2006)Google Scholar
9. Dzenis, Y., Science, 304 1917 (2004).Google Scholar
10. Liu, J., Wang, T, Uchida, T., Kumar, S., J. Appl. Polym. Sci., 96 1992 (2005)Google Scholar
11. Duesberg, G.S., Loa, I, Burghard, M., Syassen, K., Roth, S., Phys. Rev. Lett., 85 5436 (2000).Google Scholar
12. Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Filho, A.G. Souza, Saito, R., Carbon, 40, 2043 (2002).Google Scholar
13. Jorio, A., Filho, A.G. Souza, Brar, V.W., Ünlü, M.S., Goldberg, B.B., Righi, A., Hafner, J.H., Lieber, C.M., Saito, R., Dresselhaus, G., Dresselhaus, M.S., Phys Rev. B., 65 121402(R) (2002).Google Scholar
14. Filho, A.G. Souza, Jorio, A., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Saito, R., Hafner, J.H., Lieber, C.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Phys Rev. B., 65 085417 (2002).Google Scholar
15. Lucas, M., Young, R.J., Phys. Rev. B, 69, 085405 (2004).Google Scholar
16. Shin, Y.M., Hohman, M.M., Brenner, M.P., Rutledge, G.C., Appl. Phys. Lett., 78 1149 (2001).Google Scholar