Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:26:56.733Z Has data issue: false hasContentIssue false

Polymer Derived, Stoichiometric SiC Fibers

Published online by Cambridge University Press:  15 February 2011

J. Lipowitz
Affiliation:
Dow Coming Corporation, Midland, MI 48686
J. A. Rabe
Affiliation:
Dow Coming Corporation, Midland, MI 48686
L. D. Orr
Affiliation:
Dow Coming Corporation, Midland, MI 48686
R. R Androl
Affiliation:
Dow Coming Corporation, Midland, MI 48686
Get access

Abstract

Polycrystalline, stoichiometric β- silicon carbide fiber tow suitable for ceramic or metallic matrix composite use has been prepared using a polymer precursor route to obtain textile grade, weavable fibers. Individual filaments have a diameter of 10 μm, an average tensile strength of up to 3.4 GPa (500 ksi), an elastic modulus up to 430 GPa (62 msi) and a density > 3.1 g/cm3. Crystallites average about 60 nm by x-ray line broadening. The SiC fiber shows improved mechanical and thermal stability properties, especially in an inert atmosphere, as compared to commercial polymer-derived SiC ceramic fibers. Thermochemical and mechanical properties, as well as fractography and microstructure will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. DiCarlo, J., NASA Technical Memorandum 87085 (1985).Google Scholar
2. Yajima, S., Am. Ceram. Soc. Bull., 62, 893 (1983).Google Scholar
3. Yajima, S., Iwai, T., Yamamura, T., Okamura, K., and Hasegawa, Y., J. Mater. Sci. 16. 1349 (1981).Google Scholar
4. a. Lipowitz, J., Rabe, J.A. and Salinger, R.M., in Handbook of Fiber Science and Technology: Vol II. High Technology Fibers. Part C. edited by Lewin, M. and Preston, J. (Marcel Dekker, Inc., New York, 1993), pp. 207273.Google Scholar
b. Laine, R. M. and Babonneau, F., Chem. Mater., 5, 260279 (1993).Google Scholar
5. Hasegawa, Y., Iimura, M., and Yajima, S., J. Mater, Sci., 1 720728 (1980).Google Scholar
6. Song, Y.C., Hasegawa, Y., Yang, S.J. and Sato, M., J. Mater. Sci., 23 19111920 (1988).Google Scholar
7. Mah, T., Hecht, N.L., McCullum, D.E., Hoenigman, J.R., Kim, H.M., Katz, A.P. and Lipsitt, H.A., J.Mater. Sci, 19. 1191 (1984).Google Scholar
8. Fischbach, D.B., Lemoine, P.M. and Yen, G.V., J. Mater. Sci., 23, 987993 (1988).Google Scholar
9. Lipowitz, J., Rabe, J.A. and Zank, G.A., Ceram. Eng. Sci. Proc., 12 18191831 (1991).Google Scholar
10. DeLeeuw, D.C., Lipowitz, J. and Lu, P.P., U.S. Patent 5 071 600 (10 December 1991).Google Scholar
11. Takeda, M., Imai, Y., Ichikawa, H., Ishikawa, T., Seguchi, T. and Okamura, K., Ceram. Eng. Sci. Proc. 12 [7–8], 10071018 (1991).Google Scholar