Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:07:24.787Z Has data issue: false hasContentIssue false

Polyion Complexed Langmuir-Blodgeet (LB) Films for Optical Memory

Published online by Cambridge University Press:  15 February 2011

Masamichi Fujihira*
Affiliation:
Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan
Get access

Abstract

A stable monolayer was formed by spreading a chloroform solution of a photosensitive ionic amphiphilic compound on an aqueous subphase containing an ionic polymer with opposite charge. In addition to the increase in stability, the cross sectional area of the amphiphilic molecule usually increased on polyion complexation from that of the same amphiphilic molecule in the absence of the ionic polymer. Deposition of the monolayer onto the solid substrate as a very homogeneous LB film was possible. The increase in molecular area allows various photochemical reactions, which otherwise do not occur due to the steric hindrance, to proceed in the resulting LB films. A rapid decrease in emission of the polyion complexed pyrene LB films was observed upon UV irradiation in air. Application of this very sensitive quenching procedure to optical memory will be also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Polymeropoulos, E. E. and Möbius, D., Ber. Bunsenges. Phys. Chem. 83, 1215 (1979).Google Scholar
2. Morin, M., Leblanc, R. M., and Guruda, I., Can. J. Chem. 58, 2038 (1980).CrossRefGoogle Scholar
3. Ando, E., Miyazaki, J., Morimoto, K., Nakahara, H., and Fukuda, K., Thin Solid Films 133, 21(1985).Google Scholar
4. Lewis, A. and Priore, L. V. Del, Phys. Today 38 (1988).Google Scholar
5. Hyono, A. and Kuriyama, S., Nature 193, 679 (1962).Google Scholar
6. Munger, G. and Leblanc, R. M., Rev. Sci. Instrum. 51, 710 (1980).Google Scholar
7. Maeda, Y and Isemura, T., Nature, 215, 765 (1967).CrossRefGoogle Scholar
8. Brockman, R. E. and Brody, S. S., Z. Naturforsch 26b, 119 (1971).CrossRefGoogle Scholar
9. Nishiyama, K. and Fujihira, M., Chem. Lett. 1443 (1987).Google Scholar
10. Whitten, D. G., J. Am. Chem. Soc. 96, 594 (1974).Google Scholar
11. Collins-Gold, L., Mdbius, D., and Whitten, D. G., Langmuir 2, 191 (1986).CrossRefGoogle Scholar
12. Fukuda, K. and Nakahara, H., J. Colloid Interface Sci. 98, 555 (1984).Google Scholar
13. Shimomura, M. and Kunitake, T., Thin Solid Films 132, 243 (1985).CrossRefGoogle Scholar
14. Sandhu, S. S., Yianni, Y. P., Morgan, C. G., Taylor, D. M., and Zaaba, B., Biophys. Acta 860, 253 (1986).Google Scholar
15. Yabe, A., Kawabata, Y., Niino, H., Tanaka, M., Ouchi, A., Takahashi, H., Tamura, S., Takagi, W., Nakahara, H., and Fukuda, K., Chem. Lett. 1 (1988).Google Scholar
16. Nakahara, H., Fukuda, K., Shimomura, M., and Kunitaka, T., Nippon Kagaku Kaishi 1001 (1988).Google Scholar
17. Nishiyama, K. and Fujihira, M., Chem. Lett. 1257 (1988).Google Scholar
18. Mooney, W. F., Brown, P. E., Russell, J. C., Costa, S. B., Pedorson, L. G., and Whitten, D. G., J. Am. Chem. Soc. 106, 5659 (1984).CrossRefGoogle Scholar
19. Liu, Z. F, Hashimoto, K., and Fujishima, A., Nature 347, 658 (1990).Google Scholar
20. Yoneyama, H. and Fujihira, M., Proceedings of International Congress on Membranes and Membrane Processes, Tokyo, 1987, p. 699.Google Scholar
21. Fujihira, M.and Araki, T., Bull. Chem. Soc. Jpn., 2375 (1986).Google Scholar
22. McArdle, C. B., Blair, H., Barraud, A., and Ruadel-Teixier, A., Thin Solid Films 99 181 (1983).Google Scholar
23. Holden, D. A., Ringsdorf, H., Deblauwe, V., and Smets, G., J. Phys. Chem. 8 716 (1984).CrossRefGoogle Scholar
24. Fujihira, M., Nishiyama, K., Hamaguchi, H., and Tatsu, Y., Chem. Lett. 253 (1986).Google Scholar
25. Ozaki, H., Harada, Y., Nishiyama, K., and Fujihira, M., J. Am. Chem. Soc. 109, 950 (1987).Google Scholar
26. Nishiyama, K., PhD thesis, Tokyo Institute of Technology, 1989.Google Scholar
27. Guruda, I. and Leblanc, R. M., Can. J. Chem. 4 576 (1976).Google Scholar
28. Tazuke, S., Kurihara, S., Yamaguchi, H., and Ikeda, T., J. Phys. Chem. 91 248 (1987).CrossRefGoogle Scholar
29. Nishiyama, K., Kurihara, M., and Fujihira, M., Thin Solid Films 179 477 (1989); M. Kurihara, M.S. thesis, Tokyo Institute of Technology, 1990.Google Scholar
30. Fujihira, M. and Tatsu, Y., Fuji LB Post-Conference, June 10–12, 1988, Susono, p.31,Google Scholar
31. Kuhn, H., Mobius, D., and Bucher, H., in Weissberger, A. and Rossiter, B. (eds.), Techniques of Chemistry, Vol. I, Physical Methods of Chemistry, Part IIIB, Wiley-Interscience, New York, 1972.Google Scholar
32. Fujihira, M., Kamei, T., Sakomura, M., Tatsu, Y., and Kato, Y., Thin Solid Films 179 485 (1989).Google Scholar
33. Galla, J. H., Thielen, U., and Hartman, W., Chem. Phys. Lipid 2, 239 (1979).Google Scholar
34. Sunamoto, J., Kondo, H., Nomura, T., and Okamoto, H., J. Am. Chem. Soc. 102, 1146 (1980).Google Scholar
35. Fujihira, M. and Kamei, T., 3rd International Symposium on Bioelectronic and Molecular Electronic Devices R&D Association for Future Electron Devices, Dec. 18–20, 1990, Kobe, Japan, p. 43.Google Scholar
36. Takano, H., B.Eng. thesis, Tokyo Institute of Technology, 1992.Google Scholar
37. Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S., and Kostelak, R. L., Science 251, 1468 (1991).Google Scholar
38. Lieberman, K., Harush, S., Lewis, A., and Kopelman, R., Science 247, 59 (1989); Nature 354, 214 (1991).Google Scholar
39. Irin, M., Jpn. J. Appl. Phys. 28, 215 (1989).Google Scholar