Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:40:31.508Z Has data issue: false hasContentIssue false

Polychalcogenide Complexes as Low Temperature Precursors for Quantum Size and Bulk Binary and Ternary Semiconductors

Published online by Cambridge University Press:  25 February 2011

Sandeep Dhingra
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824
Kang-Woo Kim
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824
Get access

Abstract

We report the utility of \Cd(Se4)2]2-, \Cu4Se12]2- and \In3Se15]3- as convenient low temperature precursors to semiconducting CdSe and CuInSe2. DMF and DMSO solutions of these complexes react with Se-abstracting reagents such as CN- and n-(Bu3)P to yield the corresponding binary solids at 155 °C or less. Appropriate stoichiometric mixtures of \Cu4Se12]2- and \In3Se15]3- react to give CuInSe2. The semiconducting solids were characterized with UV/vis spectroscopic, X-ray crystallographic and electron (scanning and transmission) microscopic techniques. The particle size of these materials can range from the quantum-size regime to the bulk regime, depending on the reaction conditions, metal precursor complex and Se-abstracting reagent used.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] (a) Draganjac, M.; Rauchfuss, T. B. Angew. Chem., Int. Ed. Engl. 1985, 24, 742757 (b) Ansari, M.A.; Ibers, J.A. Coord. Chem. Rev. 1990, 100, 223-266 (c) Kanatzidis, M. G. Comments on Inorg. Chem. 1990, 1, 161-195Google Scholar
[2] (a) Adel, J.; Weller, F.; Dehnicke, K. Z. Naturforsch 1988, 42B, 10941100. (b) Kräuter, G.; Weller, F.; Dehnicke, K Z. Naturforsch 1989, 44B. 444-454Google Scholar
[3] Cusick, J.; Scudder, M. L.; Craig, D. C.; Dance, I. G. Polyhedron 1989, 8, 11391141.Google Scholar
[4] (a) Dhingra, S.; Kanatzidis, M. G. manuscript in preparation (b) Dhingra, S.; Huang, S.-P.; Kanatzidis, M. G. 198th ACS National Meeting, Miami Beach, Florida; Book of Abstracts INOR 173Google Scholar
[5] For pyrolytic routes see: Dhingra, S; Kanatzidis, M. G. in “Better Ceramics Through Chemistry IV” Mat. Res. Soc. Symp. Proc. 1990, in press.Google Scholar
[6] (a) Tuttle, J. R.; Albin, D. S.; Noufi, R. Solar Cells 1989, 27, 231236 (b) Zeibel, K. “The potential of CuInSe2 and CdTe for Space photovoltaic Applications. 23rd Intersociety Energy Conversion Engineering Conference” Vol. 3, Goswami, D. Y. ed, ASME, 1988, pp 97-102Google Scholar
[7] (a) Chemical Perspectives in Microelectronic Materials references therein., Gross, M. E.; Jasinski, J. M.; Yates, J. T. (Eds) Mat. Res. Soc. Symp. Proc. 1989, 131. (b) Better Ceramics Through Chemistry III, and references therein. Brinker, C. J.; Clark, D. W.; and Ulrich, D. R. (Eds) Mat. Res. Soc. Symp. Proc. 1988, 121Google Scholar
[8] (a) Brennan, J. G.; Siegrist, T.; Carroll, J. P.; Stuczynski, S. M.; Brus, L. E.; Steigerwald, M. L. J. Am. Chem. Soc. 1989, 111 41414143 (b) Fan, G.; Williams, J. O. J. Chem. Soc., Faraday Trans. I 1987, 83. 323-338 (c) Steigerwald, M. L.; Rice, C. E. J. Am. Chem. Soc. 1988, 110, 4228-4231.Google Scholar
[9] (a) Bolinger, C. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 1981, 103, 56205621 (b) Hadjikyriacou, A. I.; Coucouvanis, D. Inorg. Chem. 1987, 26. 2400-2408Google Scholar
[10] Dhingra, S.; Kim, K.-W.; Kanatzidis, M. G. work in progress and manuscript in preparationGoogle Scholar
[12] (a) R., Rosetti; R., Hull; J. M., Gibson; L. E., Brus J. Chem. Phys. 1985, 82, 552559 (b) Chestnoy, N.; Harris, T. D.; Hull, R.; Brus, L. E. J. Phys. Chem. 1986, 20, 3393-3399 (c) Steigerwald, M.L.; Alivizatos, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, K; Muller, A. J.; Tayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E. J. Am. Chem. Soc. 1988, 11,3046-3050Google Scholar
[13] (a) Wang, Y.; Mahler, W. Opt. Comm. 1987, 61, 233236 (b) Wang, Y.; Herron, N. J. Phys. Chem. 1987, 91, 257-260 (c) Wang, Y.; Duke, C. Phys. Rev. 1988, 16, 6417-6423 (d) Zao, X., K; Baral, S.; Rolandi, R.; Fendler, J. H. J. Am. Chem. Soc. 1988, 110, 1012-1024Google Scholar
[14] CuFeS2 structure type. Wells, A. F.Structural Inorganic Chemistry5th Ed. Clerendon Press, Oxford, 1984, pp 779 Google Scholar
[15] The band gap of CuInSe2 is 1.04 eV (or 1192 nm)Google Scholar